Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer
Jiaxin Yin, … , Ying Xiong, Jing Tan
Jiaxin Yin, … , Ying Xiong, Jing Tan
Published June 6, 2024
Citation Information: JCI Insight. 2024;9(14):e177857. https://doi.org/10.1172/jci.insight.177857.
View: Text | PDF
Research Article Oncology Therapeutics

4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer

  • Text
  • PDF
Abstract

Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here, we show that ferroptosis negative regulation signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High-throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor–resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/eIF4E binding protein 1 (4EBP1) signaling promoted solute carrier family 7 member 11 (SLC7A11) protein synthesis, leading to ferroptosis inhibition in MEK inhibitor–resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR/4EBP1 axis to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.

Authors

Jiaxin Yin, Jianfeng Chen, Jing Han Hong, Yulin Huang, Rong Xiao, Shini Liu, Peng Deng, Yichen Sun, Kelila Xin Ye Chai, Xian Zeng, Jason Yongsheng Chan, Peiyong Guan, Yali Wang, Peili Wang, Chongjie Tong, Qiang Yu, Xiaojun Xia, Choon Kiat Ong, Bin Tean Teh, Ying Xiong, Jing Tan

×

Figure 2

Loss of ferroptosis is associated with the resistance to MEK inhibitors in OV.

Options: View larger image (or click on image) Download as PowerPoint
Loss of ferroptosis is associated with the resistance to MEK inhibitors ...
(A) Lipid ROS level and (B) intracellular GSH level of commercial OV cell lines treated with trametinib (Tram, 200 nM) combined with or without Lipro-1 (100 nM). (C) Lipid ROS level and (D) intracellular GSH level of OV patient-derived cells (PDCs) treated with trametinib (200 nM) combined with or without Lipro-1 (100 nM). (E) Lipid peroxidation level of trametinib acquired-resistant cells A2780R and OVCAR5R treated with or without trametinib (200 nM). (F) A2780 and A2780R cells were treated with trametinib (200 nM) and analyzed by TEM to detect ultrastructure of mitochondria in 2 scale bars, 500 nm and 2 μm. The data are presented as the mean ± SD of three independent experiments. (A and C) P values were determined by 1-way ANOVA with Bonferroni’s post hoc test; (B, D and E) P values were determined by unpaired Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts