Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Natural history study of hepatic glycogen storage disease type IV and comparison to Gbe1ys/ys model
Rebecca L. Koch, Bridget T. Kiely, Su Jin Choi, William R. Jeck, Leticia S. Flores, Vikrant Sood, Seema Alam, Gilda Porta, Katy LaVecchio, Claudia Soler-Alfonso, Priya S. Kishnani
Rebecca L. Koch, Bridget T. Kiely, Su Jin Choi, William R. Jeck, Leticia S. Flores, Vikrant Sood, Seema Alam, Gilda Porta, Katy LaVecchio, Claudia Soler-Alfonso, Priya S. Kishnani
View: Text | PDF
Clinical Research and Public Health Genetics Hepatology

Natural history study of hepatic glycogen storage disease type IV and comparison to Gbe1ys/ys model

  • Text
  • PDF
Abstract

Background Glycogen storage disease type IV (GSD IV) is an ultrarare autosomal recessive disorder that causes deficiency of functional glycogen branching enzyme and formation of abnormally structured glycogen termed polyglucosan. GSD IV has traditionally been categorized based on primary hepatic or neuromuscular involvement, with hepatic GSD IV subclassified as discrete subtypes: classic (progressive) and nonprogressive.Methods To better understand the progression of liver disease in GSD IV, we present clinical and histopathology data from 23 patients from around the world and characterized the liver involvement in the Gbe1ys/ys knockin mouse model.Results We propose an alternative to the established subtype-based terminology for characterizing liver disease in GSD IV and recognize 3 tiers of disease severity: (i) “severe progressive” liver disease, (ii) “intermediate progressive” liver disease, and (iii) “attenuated” liver disease. Analysis of liver pathology revealed that risk for liver failure cannot be predicted from liver biopsy findings alone in individuals affected by GSD IV. Moreover, analysis of postmortem liver pathology from an individual who died over 40 years after being diagnosed with nonprogressive hepatic GSD IV in childhood verified that liver fibrosis did not regress. Last, characterization of the liver involvement in a mouse model known to recapitulate the adult-onset neurodegenerative form of GSD IV (Gbe1ys/ys mouse model) demonstrated hepatic disease.Conclusion Our findings challenge the established subtype-based view of GSD IV and suggest that liver disease severity among patients with GSD IV represents a disease continuum.Trial registration ClinicalTrials.gov NCT02683512Funding None

Authors

Rebecca L. Koch, Bridget T. Kiely, Su Jin Choi, William R. Jeck, Leticia S. Flores, Vikrant Sood, Seema Alam, Gilda Porta, Katy LaVecchio, Claudia Soler-Alfonso, Priya S. Kishnani

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,235 310
PDF 223 85
Figure 396 0
Table 92 0
Supplemental data 301 52
Citation downloads 91 0
Totals 2,338 447
Total Views 2,785

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts