Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome
Michael J. Iadarola, Matthew R. Sapio, Amelia J. Loydpierson, Carolyn B. Mervis, Jill C. Fehrenbacher, Michael R. Vasko, Dragan Maric, Daniel P. Eisenberg, Tiffany A. Nash, J. Shane Kippenhan, Madeline H. Garvey, Andrew J. Mannes, Michael D. Gregory, Karen F. Berman
Michael J. Iadarola, Matthew R. Sapio, Amelia J. Loydpierson, Carolyn B. Mervis, Jill C. Fehrenbacher, Michael R. Vasko, Dragan Maric, Daniel P. Eisenberg, Tiffany A. Nash, J. Shane Kippenhan, Madeline H. Garvey, Andrew J. Mannes, Michael D. Gregory, Karen F. Berman
View: Text | PDF
Research Article Genetics Neuroscience

Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome

  • Text
  • PDF
Abstract

Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing “genetic analgesia” in Dup7 and offer previously untargeted routes to pain control.

Authors

Michael J. Iadarola, Matthew R. Sapio, Amelia J. Loydpierson, Carolyn B. Mervis, Jill C. Fehrenbacher, Michael R. Vasko, Dragan Maric, Daniel P. Eisenberg, Tiffany A. Nash, J. Shane Kippenhan, Madeline H. Garvey, Andrew J. Mannes, Michael D. Gregory, Karen F. Berman

×

Figure 8

Summary and translational mechanisms for nociceptive presynaptic inhibition.

Options: View larger image (or click on image) Download as PowerPoint
Summary and translational mechanisms for nociceptive presynaptic inhibit...
Upper left: a simplified schematic of vesicle fusion showing SNARE complex and the tethered calcium channel. Depolarization of the terminal causes an influx of calcium through voltage-gated calcium channels and initiates vesicle fusion. Lower right: overexpression of STX1A interferes with the fusion machinery through multiple interactions, which occlude fusion and interrupt neuropeptide release from primary afferents. The resulting phenotype is profound analgesia. The blue panel depicts multiple mechanisms for inhibition of presynaptic vesicle fusion ranging from competition, to disruption of STX1A-calcium channel tethering (52, 76), to enzymatic cleavage with botulinum toxins (59). Three interventions, botulinum toxin, morphine, and the calcium channel blocker ziconotide (77, 78), are currently used therapeutic agents. Intrathecal administration of morphine or ziconotide produces potent and effective analgesia.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts