Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
TNF drives aberrant BMP signaling to induce endothelial and mesenchymal dysregulation in pulmonary hypertension
Maria de la Luz Garcia-Hernandez, Javier Rangel-Moreno, Qingfu Xu, YeJin Jeong, Soumyaroop Bhattacharya, Ravi Misra, Stacey Duemmel, Ke Yuan, Benjamin D. Korman
Maria de la Luz Garcia-Hernandez, Javier Rangel-Moreno, Qingfu Xu, YeJin Jeong, Soumyaroop Bhattacharya, Ravi Misra, Stacey Duemmel, Ke Yuan, Benjamin D. Korman
View: Text | PDF
Research Article Inflammation Pulmonology Vascular biology

TNF drives aberrant BMP signaling to induce endothelial and mesenchymal dysregulation in pulmonary hypertension

  • Text
  • PDF
Abstract

The pathobiology of pulmonary hypertension (PH) is complex and multiple cell types contribute to disease pathogenesis. We sought to characterize the molecular crosstalk between endothelial and mesenchymal cells that promote PH in the tumor necrosis factor α–transgenic (TNF-Tg) model of PH. Pulmonary endothelial and mesenchymal cells were isolated from WT and TNF-Tg mice and underwent single-cell RNA sequencing. Data were analyzed using clustering, differential gene expression and pathway analysis, ligand-receptor interaction, transcription factor binding, and RNA velocity assessments. Significantly altered ligand-receptor interactions were confirmed with immunofluorescent staining. TNF-Tg mice had increases in smooth muscle cells and Col14+ fibroblasts, and reductions in general capillary (gCAP) endothelial cells, Col13+ fibroblasts, pericytes, and myofibroblasts. Pathway analysis demonstrated NF-κB–, JAK/STAT-, and interferon-mediated inflammation, endothelial apoptosis, loss of vasodilatory pathways, increased TGF-β signaling, and smooth muscle cell proliferation. Ligand-receptor analysis demonstrated a loss of BMPR2 signaling in TNF-Tg lungs and establishment of a maladaptive BMP signaling cascade, which functional studies revealed stemmed from endothelial NF-κB activation and subsequent endothelial SMAD2/3 signaling. This system highlights a complex set of changes in cellular composition, cell communication, and cell fate driven by TNF signaling that lead to aberrant BMP signaling that is critical for development of PH.

Authors

Maria de la Luz Garcia-Hernandez, Javier Rangel-Moreno, Qingfu Xu, YeJin Jeong, Soumyaroop Bhattacharya, Ravi Misra, Stacey Duemmel, Ke Yuan, Benjamin D. Korman

×

Figure 4

Differential gene expression and pathway changes in TNF-mediated PH.

Options: View larger image (or click on image) Download as PowerPoint
Differential gene expression and pathway changes in TNF-mediated PH.
(A)...
(A) Genes significantly altered across pseudotime in TNF-Tg mice. After trajectory analysis using Slingshot, pseudotime was calculated and genes expressing significantly altered pseudotime in TNF-Tg versus WT were calculated using tradeSeq. Heatmap demonstrates genes that vary over pseudotime. (B) Pathway analysis of genes with altered pseudotime in TNF-Tg conditions. Volcano plots demonstrate genes that are most differentially over- and underexpressed in TNF-Tg versus WT mice in (C) gCAP1 cells, (D) A/V endothelial cells, (E) VSMCs, and (F) collagen 13+ fibroblasts. (G) Dot plot indicating the most differentially regulated pathways in TNF-Tg versus WT cells in each of these 4 populations. Dot plots colors indicate the pathway database and the x axis indicates significance (P value, Fisher’s exact test) of overrepresentation of the pathway gCAP1 cells (blue), A/V endothelial cells (lime green), VSMCs (purple), and collagen 13+ fibroblasts (lime green).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts