Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein–coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.
Yuki Otsuka, Keiko Imamura, Akio Oishi, Kazuhide Asakawa, Takayuki Kondo, Risako Nakai, Mika Suga, Ikuyo Inoue, Yukako Sagara, Kayoko Tsukita, Kaori Teranaka, Yu Nishimura, Akira Watanabe, Kazuhiro Umeyama, Nanako Okushima, Kohnosuke Mitani, Hiroshi Nagashima, Koichi Kawakami, Keiko Muguruma, Akitaka Tsujikawa, Haruhisa Inoue