Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Histone demethylase JARID1C/KDM5C regulates Th17 cells by increasing IL-6 expression in diabetic plasmacytoid dendritic cells
Christopher O. Audu, Sonya J. Wolf, Amrita D. Joshi, Jadie Y. Moon, William J. Melvin, Sriganesh B. Sharma, Frank M. Davis, Andrea T. Obi, Rachel Wasikowski, Lam C. Tsoi, Emily C. Barrett, Kevin D. Mangum, Tyler M. Bauer, Steven L. Kunkel, Beth B. Moore, Katherine A. Gallagher
Christopher O. Audu, Sonya J. Wolf, Amrita D. Joshi, Jadie Y. Moon, William J. Melvin, Sriganesh B. Sharma, Frank M. Davis, Andrea T. Obi, Rachel Wasikowski, Lam C. Tsoi, Emily C. Barrett, Kevin D. Mangum, Tyler M. Bauer, Steven L. Kunkel, Beth B. Moore, Katherine A. Gallagher
View: Text | PDF
Research Article Immunology Inflammation

Histone demethylase JARID1C/KDM5C regulates Th17 cells by increasing IL-6 expression in diabetic plasmacytoid dendritic cells

  • Text
  • PDF
Abstract

Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-β and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.

Authors

Christopher O. Audu, Sonya J. Wolf, Amrita D. Joshi, Jadie Y. Moon, William J. Melvin, Sriganesh B. Sharma, Frank M. Davis, Andrea T. Obi, Rachel Wasikowski, Lam C. Tsoi, Emily C. Barrett, Kevin D. Mangum, Tyler M. Bauer, Steven L. Kunkel, Beth B. Moore, Katherine A. Gallagher

×

Full Text PDF

Download PDF (1.33 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts