Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B
Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo
Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo
View: Text | PDF
Research Article Inflammation Therapeutics

Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B

  • Text
  • PDF
Abstract

Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-β1–activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-β1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.

Authors

Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo

×

Figure 2

SfA induces secretion of PPIB from cells.

Options: View larger image (or click on image) Download as PowerPoint
SfA induces secretion of PPIB from cells.
(A) Western blot of intracellu...
(A) Western blot of intracellular and extracellular PPIB in Jurkat cells treated with 1 μM SfA or 1 μM CsA for 4 hours ± 10.6 μM brefeldin A. (B) Immunofluorescence imaging of PPIB and PDI in HeLa cells treated with 1 μM SfA or 1 μM CsA for 4 hours. Scale bars: 20 μm. (C) Volcano plot of proteins secreted by Jurkat cells following treatment with 1 μM SfA for 4 hours relative to vehicle (n = 3). (D) Volcano plot of proteins secreted by Jurkat cells following treatment with 1 μM CsA for 4 hours relative to vehicle (n = 3). (E) Structure of sanglifehrin macrocycle (SfA-mc). (F) Western blot of intracellular PPIB in Jurkat cells treated with 1 μM SfA or 1 μM SfA-mc for 4 hours ± 10.6 μM brefeldin A. (G) Western blot of Jurkat cell lysates for ER stress markers after treatment with 1 μM SfA or 1 μM SfA-mc with or without brefeldin A for 24 hours (n = 3).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts