Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Disruption of the nuclear localization signal in RBM20 is causative in dilated cardiomyopathy
Yanghai Zhang, … , Henk Granzier, Wei Guo
Yanghai Zhang, … , Henk Granzier, Wei Guo
Published May 23, 2023
Citation Information: JCI Insight. 2023;8(13):e170001. https://doi.org/10.1172/jci.insight.170001.
View: Text | PDF
Research Article Cardiology Cell biology

Disruption of the nuclear localization signal in RBM20 is causative in dilated cardiomyopathy

  • Text
  • PDF
Abstract

Human patients carrying genetic mutations in RNA binding motif 20 (RBM20) develop a clinically aggressive dilated cardiomyopathy (DCM). Genetic mutation knockin (KI) animal models imply that altered function of the arginine-serine-rich (RS) domain is crucial for severe DCM. To test this hypothesis, we generated an RS domain deletion mouse model (Rbm20ΔRS). We showed that Rbm20ΔRS mice manifested DCM with mis-splicing of RBM20 target transcripts. We found that RBM20 was mis-localized to the sarcoplasm in Rbm20ΔRS mouse hearts and formed RBM20 granules similar to those detected in mutation KI animals. In contrast, mice lacking the RNA recognition motif showed similar mis-splicing of major RBM20 target genes but did not develop DCM or exhibit RBM20 granule formation. Using in vitro studies with immunocytochemical staining, we demonstrated that only DCM-associated mutations in the RS domain facilitated RBM20 nucleocytoplasmic transport and promoted granule assembly. Further, we defined the core nuclear localization signal (NLS) within the RS domain of RBM20. Mutation analysis of phosphorylation sites in the RS domain suggested that this modification may be dispensable for RBM20 nucleocytoplasmic transport. Collectively, our findings revealed that disruption of RS domain–mediated nuclear localization is crucial for severe DCM caused by NLS mutations.

Authors

Yanghai Zhang, Zachery R. Gregorich, Yujuan Wang, Camila Urbano Braz, Jibin Zhang, Yang Liu, Peiheng Liu, Jiaxi Shen, Nanyumuzi Aori, Timothy A. Hacker, Henk Granzier, Wei Guo

×

Full Text PDF | Download (26.37 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts