Therapeutic strategies targeting complement have revolutionized the treatment of myasthenia gravis (MG). However, a deeper understanding of complement modulation in the human system is required to improve treatment responses and identify “off-target effects” shaping long-term outcomes. For this purpose, we studied a cohort of MG patients treated with either eculizumab (n = 10) or azathioprine (n = 10) as well as treatment-naïve (n = 10) patients using a combined proteomics and metabolomics approach. This strategy confirmed known effects of eculizumab on the terminal complement cascade. Beyond that, eculizumab modulated the serum proteometabolome as distinct pathways were altered in eculizumab-treated patients including the oxidative stress response, mitogen-activated protein kinase signaling and lipid metabolism with particular emphasis on arachidonic acid signaling. We detected reduced levels of arachidonate 5-lipoxygenase (ALOX5) and leukotriene A4 (LTA4) in eculizumab-treated patients. Mechanistically, ligation of the C5a receptor (C5aR) is needed for ALOX5 metabolism and generation of downstream leukotrienes. As eculizumab prevents cleavage of C5 into C5a, decreased engagement of C5aR may inhibit ALOX5-mediated synthesis of pro-inflammatory leukotrienes. These findings indicate distinct “off-target effects” induced by eculizumab, illuminating potential mechanisms of action that may be harnessed to improve treatment outcomes.
Christopher Nelke, Christina B. Schroeter, Frauke Stascheit, Niklas Huntemann, Marc Pawlitzki, Alice G. Willison, Saskia Räuber, Nico Melzer, Ute Distler, Stefan Tenzer, Kai Stühler, Andreas Roos, Andreas Meisel, Sven G. Meuth, Tobias Ruck