Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Intragraft memory-like CD127hiCD4+Foxp3+ Tregs maintain transplant tolerance
Yuanfei Zhao, Leigh Nicholson, Hannah Wang, Yi Wen Qian, Wayne J. Hawthorne, Elvira Jimenez-Vera, Brian S. Gloss, Joey Lai, Adwin Thomas, Yi Vee Chew, Heather Burns, Geoff Y. Zhang, Yuan Min Wang, Natasha M. Rogers, Guoping Zheng, Shounan Yi, Stephen I. Alexander, Philip J. O’Connell, Min Hu
Yuanfei Zhao, Leigh Nicholson, Hannah Wang, Yi Wen Qian, Wayne J. Hawthorne, Elvira Jimenez-Vera, Brian S. Gloss, Joey Lai, Adwin Thomas, Yi Vee Chew, Heather Burns, Geoff Y. Zhang, Yuan Min Wang, Natasha M. Rogers, Guoping Zheng, Shounan Yi, Stephen I. Alexander, Philip J. O’Connell, Min Hu
View: Text | PDF
Research Article Transplantation

Intragraft memory-like CD127hiCD4+Foxp3+ Tregs maintain transplant tolerance

  • Text
  • PDF
Abstract

CD4+Foxp3+ regulatory T cells (Tregs) play an essential role in suppressing transplant rejection, but their role within the graft and heterogeneity in tolerance are poorly understood. Here, we compared phenotypic and transcriptomic characteristics of Treg populations within lymphoid organs and grafts in an islet xenotransplant model of tolerance. We showed Tregs were essential for tolerance induction and maintenance. Tregs demonstrated heterogeneity within the graft and lymphoid organs of tolerant mice. A subpopulation of CD127hi Tregs with memory features were found in lymphoid organs, presented in high proportions within long-surviving islet grafts, and had a transcriptomic and phenotypic profile similar to tissue Tregs. Importantly, these memory-like CD127hi Tregs were better able to prevent rejection by effector T cells, after adoptive transfer into secondary Rag–/– hosts, than naive Tregs or unselected Tregs from tolerant mice. Administration of IL-7 to the CD127hi Treg subset was associated with a strong activation of phosphorylation of STAT5. We proposed that memory-like CD127hi Tregs developed within the draining lymph node and underwent further genetic reprogramming within the graft toward a phenotype that had shared characteristics with other tissue or tumor Tregs. These findings suggested that engineering Tregs with these characteristics either in vivo or for adoptive transfer could enhance transplant tolerance.

Authors

Yuanfei Zhao, Leigh Nicholson, Hannah Wang, Yi Wen Qian, Wayne J. Hawthorne, Elvira Jimenez-Vera, Brian S. Gloss, Joey Lai, Adwin Thomas, Yi Vee Chew, Heather Burns, Geoff Y. Zhang, Yuan Min Wang, Natasha M. Rogers, Guoping Zheng, Shounan Yi, Stephen I. Alexander, Philip J. O’Connell, Min Hu

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data 1 - Download (2.62 MB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts