The complexity of the mechanisms underlying metabolic dysfunction–associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction–associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.
Pablo Fernández-Tussy, Magdalena P. Cardelo, Hanming Zhang, Jonathan Sun, Nathan L. Price, Nabil E. Boutagy, Leigh Goedeke, Martí Cadena-Sandoval, Chrysovalantou E. Xirouchaki, Wendy Brown, Xiaoyong Yang, Oscar Pastor-Rojo, Rebecca A. Haeusler, Anton M. Bennett, Tony Tiganis, Yajaira Suárez, Carlos Fernández-Hernando
Usage data is cumulative from August 2024 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,885 | 106 |
512 | 27 | |
Figure | 436 | 1 |
Supplemental data | 168 | 5 |
Citation downloads | 53 | 0 |
Totals | 3,054 | 139 |
Total Views | 3,193 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.