The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.
Ignacio del Valle, Matthew D. Young, Gerda Kildisiute, Olumide K. Ogunbiyi, Federica Buonocore, Ian C. Simcock, Eleonora Khabirova, Berta Crespo, Nadjeda Moreno, Tony Brooks, Paola Niola, Katherine Swarbrick, Jenifer P. Suntharalingham, Sinead M. McGlacken-Byrne, Owen J. Arthurs, Sam Behjati, John C. Achermann
Expression of genes enriched in the adult adrenal gland and in monogenic causes of PAI.