Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Regulatory T cells suppress the motility of cytotoxic T cells in Friend retrovirus–infected mice
Daniela Mittermüller, Lucas Otto, Zoë Long, Andreas Kraus, Alexander Beer, Anja Hasenberg, Gennadiy Zelinskyy, Jaana Westmeier, Kim J. Hasenkrug, Ulf Dittmer, Matthias Gunzer
Daniela Mittermüller, Lucas Otto, Zoë Long, Andreas Kraus, Alexander Beer, Anja Hasenberg, Gennadiy Zelinskyy, Jaana Westmeier, Kim J. Hasenkrug, Ulf Dittmer, Matthias Gunzer
View: Text | PDF
Research Article Immunology Virology

Regulatory T cells suppress the motility of cytotoxic T cells in Friend retrovirus–infected mice

  • Text
  • PDF
Abstract

Antiviral immunity often requires CD8+ cytotoxic T lymphocytes (CTLs) that actively migrate and search for virus-infected targets. Regulatory T cells (Tregs) have been shown to suppress CTL responses, but it is not known whether this is also mediated by effects on CTL motility. Here, we used intravital 2-photon microscopy in the Friend retrovirus (FV) mouse model to define the impact of Tregs on CTL motility throughout the course of acute infection. Virus-specific CTLs were very motile and had frequent short contacts with target cells at their peak cytotoxic activity. However, when Tregs were activated and expanded in late-acute FV infection, CTLs became significantly less motile and contacts with target cells were prolonged. This phenotype was associated with development of functional CTL exhaustion. Tregs had direct contacts with CTLs in vivo and, importantly, their experimental depletion restored CTL motility. Our findings identify an effect of Tregs on CTL motility as part of their mechanism of functional impairment in chronic viral infections. Future studies must address the underlying molecular mechanisms.

Authors

Daniela Mittermüller, Lucas Otto, Zoë Long, Andreas Kraus, Alexander Beer, Anja Hasenberg, Gennadiy Zelinskyy, Jaana Westmeier, Kim J. Hasenkrug, Ulf Dittmer, Matthias Gunzer

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,010 103
PDF 156 11
Figure 391 2
Supplemental data 370 0
Citation downloads 130 0
Totals 2,057 116
Total Views 2,173

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts