Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Upregulation of acid ceramidase contributes to tumor progression in tuberous sclerosis complex
Aristotelis Astrinidis, Chenggang Li, Erik Y. Zhang, Xueheng Zhao, Shuyang Zhao, Minzhe Guo, Tasnim Olatoke, Ushodaya Mattam, Rong Huang, Alan G. Zhang, Lori Pitstick, Elizabeth J. Kopras, Nishant Gupta, Roman Jandarov, Eric P. Smith, Elizabeth Fugate, Diana Lindquist, Maciej M. Markiewski, Magdalena Karbowniczek, Kathryn A. Wikenheiser-Brokamp, Kenneth D. R. Setchell, Francis X. McCormack, Yan Xu, Jane J. Yu
Aristotelis Astrinidis, Chenggang Li, Erik Y. Zhang, Xueheng Zhao, Shuyang Zhao, Minzhe Guo, Tasnim Olatoke, Ushodaya Mattam, Rong Huang, Alan G. Zhang, Lori Pitstick, Elizabeth J. Kopras, Nishant Gupta, Roman Jandarov, Eric P. Smith, Elizabeth Fugate, Diana Lindquist, Maciej M. Markiewski, Magdalena Karbowniczek, Kathryn A. Wikenheiser-Brokamp, Kenneth D. R. Setchell, Francis X. McCormack, Yan Xu, Jane J. Yu
View: Text | PDF
Research Article Cell biology Metabolism

Upregulation of acid ceramidase contributes to tumor progression in tuberous sclerosis complex

  • Text
  • PDF
Abstract

Tuberous sclerosis complex (TSC) is characterized by multisystem, low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that result in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell–derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/– mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mechanistic target of rapamycin complex 1–hyperactive neoplasms, including TSC and LAM.

Authors

Aristotelis Astrinidis, Chenggang Li, Erik Y. Zhang, Xueheng Zhao, Shuyang Zhao, Minzhe Guo, Tasnim Olatoke, Ushodaya Mattam, Rong Huang, Alan G. Zhang, Lori Pitstick, Elizabeth J. Kopras, Nishant Gupta, Roman Jandarov, Eric P. Smith, Elizabeth Fugate, Diana Lindquist, Maciej M. Markiewski, Magdalena Karbowniczek, Kathryn A. Wikenheiser-Brokamp, Kenneth D. R. Setchell, Francis X. McCormack, Yan Xu, Jane J. Yu

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 820 196
PDF 145 37
Figure 320 0
Table 51 0
Supplemental data 50 5
Citation downloads 109 0
Totals 1,495 238
Total Views 1,733

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts