Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Dietary butyrate ameliorates metabolic health associated with selective proliferation of gut Lachnospiraceae bacterium 28-4
Zhuang Li, Enchen Zhou, Cong Liu, Hope Wicks, Sena Yildiz, Farhana Razack, Zhixiong Ying, Sander Kooijman, Debby P.Y. Koonen, Marieke Heijink, Sarantos Kostidis, Martin Giera, Ingrid M.J.G. Sanders, Ed J. Kuijper, Wiep Klaas Smits, Ko Willems van Dijk, Patrick C.N. Rensen, Yanan Wang
Zhuang Li, Enchen Zhou, Cong Liu, Hope Wicks, Sena Yildiz, Farhana Razack, Zhixiong Ying, Sander Kooijman, Debby P.Y. Koonen, Marieke Heijink, Sarantos Kostidis, Martin Giera, Ingrid M.J.G. Sanders, Ed J. Kuijper, Wiep Klaas Smits, Ko Willems van Dijk, Patrick C.N. Rensen, Yanan Wang
View: Text | PDF
Research Article Endocrinology Microbiology

Dietary butyrate ameliorates metabolic health associated with selective proliferation of gut Lachnospiraceae bacterium 28-4

  • Text
  • PDF
Abstract

Short-chain fatty acids, including butyrate, have multiple metabolic benefits in individuals who are lean but not in individuals with metabolic syndrome, with the underlying mechanisms still being unclear. We aimed to investigate the role of gut microbiota in the induction of metabolic benefits of dietary butyrate. We performed antibiotic-induced microbiota depletion of the gut and fecal microbiota transplantation (FMT) in APOE*3-Leiden.CETP mice, a well-established translational model for developing human-like metabolic syndrome, and revealed that dietary butyrate reduced appetite and ameliorated high-fat diet–induced (HFD-induced) weight gain dependent on the presence of gut microbiota. FMT from butyrate-treated lean donor mice, but not butyrate-treated obese donor mice, into gut microbiota–depleted recipient mice reduced food intake, attenuated HFD-induced weight gain, and improved insulin resistance. 16S rRNA and metagenomic sequencing on cecal bacterial DNA of recipient mice implied that these effects were accompanied by the selective proliferation of Lachnospiraceae bacterium 28-4 in the gut as induced by butyrate. Collectively, our findings reveal a crucial role of gut microbiota in the beneficial metabolic effects of dietary butyrate as strongly associated with the abundance of Lachnospiraceae bacterium 28-4.

Authors

Zhuang Li, Enchen Zhou, Cong Liu, Hope Wicks, Sena Yildiz, Farhana Razack, Zhixiong Ying, Sander Kooijman, Debby P.Y. Koonen, Marieke Heijink, Sarantos Kostidis, Martin Giera, Ingrid M.J.G. Sanders, Ed J. Kuijper, Wiep Klaas Smits, Ko Willems van Dijk, Patrick C.N. Rensen, Yanan Wang

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 2,097 387
PDF 214 70
Figure 485 3
Supplemental data 279 10
Citation downloads 119 0
Totals 3,194 470
Total Views 3,664

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts