Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Regulatory factor X1 induces macrophage M1 polarization by promoting DNA demethylation in autoimmune inflammation
Shuang Yang, Pei Du, Haobo Cui, Meiling Zheng, Wei He, Xiaofei Gao, Zhi Hu, Sujie Jia, Qianjin Lu, Ming Zhao
Shuang Yang, Pei Du, Haobo Cui, Meiling Zheng, Wei He, Xiaofei Gao, Zhi Hu, Sujie Jia, Qianjin Lu, Ming Zhao
View: Text | PDF
Research Article Inflammation

Regulatory factor X1 induces macrophage M1 polarization by promoting DNA demethylation in autoimmune inflammation

  • Text
  • PDF
Abstract

Abnormal macrophage polarization is generally present in autoimmune diseases. Overwhelming M1 macrophage activation promotes the continuous progression of inflammation, which is one of the reasons for the development of autoimmune diseases. However, the underlying mechanism is still unclear. Here we explore the function of Regulatory factor X1 (RFX1) in macrophage polarization by constructing colitis and lupus-like mouse models. Both in vivo and in vitro experiments confirmed that RFX1 can promote M1 and inhibit M2 macrophage polarization. Furthermore, we found that RFX1 promoted DNA demethylation of macrophage polarization–related genes by increasing APOBEC3A/Apobec3 expression. We identified a potential RFX1 inhibitor, adenosine diphosphate (ADP), providing a potential strategy for treating autoimmune diseases.

Authors

Shuang Yang, Pei Du, Haobo Cui, Meiling Zheng, Wei He, Xiaofei Gao, Zhi Hu, Sujie Jia, Qianjin Lu, Ming Zhao

×

Full Text PDF

Download PDF (5.05 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts