Glycolysis is central to homeostasis of nucleus pulposus (NP) cells in the avascular intervertebral disc. Since the glucose transporter, GLUT1, is a highly enriched phenotypic marker of NP cells, we hypothesized that it is vital for the development and postnatal maintenance of the disc. Surprisingly, primary NP cells treated with 2 well-characterized GLUT1 inhibitors maintained normal rates of glycolysis and ATP production, indicating intrinsic compensatory mechanisms. We showed in vitro that NP cells mitigated GLUT1 loss by rewiring glucose import through GLUT3. Of note, we demonstrated that substrates, such as glutamine and palmitate, did not compensate for glucose restriction resulting from dual inhibition of GLUT1/3, and inhibition compromised long-term cell viability. To investigate the redundancy of GLUT1 function in NP, we generated 2 NP-specific knockout mice: Krt19CreERT Glut1fl/fl and Foxa2Cre Glut1fl/fl. There were no apparent defects in postnatal disc health or development and maturation in mutant mice. Microarray analysis verified that GLUT1 loss did not cause transcriptomic alterations in the NP, supporting that cells are refractory to GLUT1 loss. These observations provide the first evidence to our knowledge of functional redundancy in GLUT transporters in the physiologically hypoxic intervertebral disc and underscore the importance of glucose as the indispensable substrate for NP cells.
Shira N. Johnston, Elizabeth S. Silagi, Vedavathi Madhu, Duc H. Nguyen, Irving M. Shapiro, Makarand V. Risbud
Title and authors | Publication | Year |
---|---|---|
Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction
Xu H, Wei K, Ni J, Deng X, Wang Y, Xiang T, Song F, Wang Q, Niu Y, Jiang F, Wang J, Sheng L, Dai J |
Bone Research | 2025 |
D-mannose alleviates intervertebral disc degeneration through glutamine metabolism
Dong ZL, Jiao X, Wang ZG, Yuan K, Yang YQ, Wang Y, Li YT, Wang TC, Kan TY, Wang J, Tao HR |
Military Medical Research | 2024 |
Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV |
bioRxiv | 2024 |
Development of a diagnostic model based on glycolysis-related genes and immune infiltration in intervertebral disc degeneration.
Gao J, He L, Zhang J, Xi L, Feng H |
Heliyon | 2024 |