Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Late gene expression–deficient cytomegalovirus vectors elicit conventional T cells that do not protect against SIV
Scott G. Hansen, … , Louis J. Picker, Klaus Früh
Scott G. Hansen, … , Louis J. Picker, Klaus Früh
Published February 7, 2023
Citation Information: JCI Insight. 2023;8(6):e164692. https://doi.org/10.1172/jci.insight.164692.
View: Text | PDF
Research Article AIDS/HIV Virology

Late gene expression–deficient cytomegalovirus vectors elicit conventional T cells that do not protect against SIV

  • Text
  • PDF
Abstract

Rhesus cytomegalovirus–based (RhCMV-based) vaccine vectors induce immune responses that protect ~60% of rhesus macaques (RMs) from SIVmac239 challenge. This efficacy depends on induction of effector memory–based (EM-biased) CD8+ T cells recognizing SIV peptides presented by major histocompatibility complex-E (MHC-E) instead of MHC-Ia. The phenotype, durability, and efficacy of RhCMV/SIV-elicited cellular immune responses were maintained when vector spread was severely reduced by deleting the antihost intrinsic immunity factor phosphoprotein 71 (pp71). Here, we examined the impact of an even more stringent attenuation strategy on vector-induced immune protection against SIV. Fusion of the FK506-binding protein (FKBP) degradation domain to Rh108, the orthologue of the essential human CMV (HCMV) late gene transcription factor UL79, generated RhCMV/SIV vectors that conditionally replicate only when the FK506 analog Shield-1 is present. Despite lacking in vivo dissemination and reduced innate and B cell responses to vaccination, Rh108-deficient 68-1 RhCMV/SIV vectors elicited high-frequency, durable, EM-biased, SIV-specific T cell responses in RhCMV-seropositive RMs at doses of ≥ 1 × 106 PFU. Strikingly, elicited CD8+ T cells exclusively targeted MHC-Ia–restricted epitopes and failed to protect against SIVmac239 challenge. Thus, Rh108-dependent late gene expression is required for both induction of MHC-E–restricted T cells and protection against SIV.

Authors

Scott G. Hansen, Jennie L. Womack, Wilma Perez, Kimberli A. Schmidt, Emily Marshall, Ravi F. Iyer, Hillary Cleveland Rubeor, Claire E. Otero, Husam Taher, Nathan H. Vande Burgt, Richard Barfield, Kurt T. Randall, David Morrow, Colette M. Hughes, Andrea N. Selseth, Roxanne M. Gilbride, Julia C. Ford, Patrizia Caposio, Alice F. Tarantal, Cliburn Chan, Daniel Malouli, Peter A. Barry, Sallie R. Permar, Louis J. Picker, Klaus Früh

×

Full Text PDF | Download (4.91 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts