Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Full-length optic nerve regeneration in the absence of genetic manipulations
Qian Feng, Kimberly A. Wong, Larry I. Benowitz
Qian Feng, Kimberly A. Wong, Larry I. Benowitz
View: Text | PDF
Research Article Inflammation Neuroscience

Full-length optic nerve regeneration in the absence of genetic manipulations

  • Text
  • PDF
Abstract

The inability of mature retinal ganglion cells (RGCs) to regenerate axons after optic nerve injury can be partially reversed by manipulating cell-autonomous and/or -nonautonomous factors. Although manipulations of cell-nonautonomous factors could have higher translational potential than genetic manipulations of RGCs, they have generally produced lower levels of optic nerve regeneration. Here, we report that preconditioning resulting from mild lens injury (conditioning LI, cLI) before optic nerve damage induced far greater regeneration than LI after nerve injury or the pro-inflammatory agent zymosan given either before or after nerve damage. Unlike zymosan-induced regeneration, cLI was unaltered by depleting mature neutrophils or T cells or blocking receptors for known inflammation-derived growth factors (oncomodulin, stromal cell–derived factor 1, CCL5) and was only partly diminished by suppressing CCR2+ monocyte recruitment. Repeated episodes of LI led to full-length optic nerve regeneration, and pharmacological removal of local resident macrophages with the colony stimulating factor 1 receptor inhibitor PLX5622 enabled some axons to reinnervate the brain in just 6 weeks, comparable to the results obtained with the most effective genetic manipulations of RGCs. Thus, cell-nonautonomous interventions can induce high levels of optic nerve regeneration, paving the way to uncovering potent, translatable therapeutic targets for CNS repair.

Authors

Qian Feng, Kimberly A. Wong, Larry I. Benowitz

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,176 305
PDF 185 46
Figure 421 6
Supplemental data 62 11
Citation downloads 107 0
Totals 1,951 368
Total Views 2,319

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts