Cutaneous T cell lymphoma (CTCL) is a disfiguring and incurable disease characterized by skin-homing malignant T cells surrounded by immune cells that promote CTCL growth through an immunosuppressive tumor microenvironment (TME). Preliminary data from our phase I clinical trial of anti–programmed cell death ligand 1 (anti–PD-L1) combined with lenalidomide in patients with relapsed/refractory CTCL demonstrated promising clinical efficacy. In the current study, we analyzed the CTCL TME, which revealed a predominant PD-1+ M2-like tumor-associated macrophage (TAM) subtype with upregulated NF-κB and JAK/STAT signaling pathways and an aberrant cytokine and chemokine profile. Our in vitro studies investigated the effects of anti–PD-L1 and lenalidomide on PD-1+ M2-like TAMs. The combinatorial treatment synergistically induced functional transformation of PD-1+ M2-like TAMs toward a proinflammatory M1-like phenotype that gained phagocytic activity upon NF-κB and JAK/STAT inhibition, altered their migration through chemokine receptor alterations, and stimulated effector T cell proliferation. Lenalidomide was more effective than anti–PD-L1 in downregulation of the immunosuppressive IL-10, leading to decreased expression of both PD-1 and PD-L1. Overall, PD-1+ M2-like TAMs play an immunosuppressive role in CTCL. Anti–PD-L1 combined with lenalidomide provides a therapeutic strategy to enhance antitumor immunity by targeting PD-1+ M2-like TAMs in the CTCL TME.
Zhen Han, Xiwei Wu, Hanjun Qin, Yate-Ching Yuan, Daniel Schmolze, Chingyu Su, Jasmine Zain, Lilach Moyal, Emmilia Hodak, James F. Sanchez, Peter P. Lee, Mingye Feng, Steven T. Rosen, Christiane Querfeld
Increased levels of chemokines CCL2, CCL3, and CCL4 in patients with CTCL correlate with M2-like TAMs.