Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A pathogenic in-frame deletion-insertion variant in BEST1 phenocopies Stargardt disease
Masha Kolesnikova, Jin Kyun Oh, Jiali Wang, Winston Lee, Jana Zernant, Pei-Yin Su, Angela H. Kim, Laura A. Jenny, Tingting Yang, Rando Allikmets, Stephen H. Tsang
Masha Kolesnikova, Jin Kyun Oh, Jiali Wang, Winston Lee, Jana Zernant, Pei-Yin Su, Angela H. Kim, Laura A. Jenny, Tingting Yang, Rando Allikmets, Stephen H. Tsang
View: Text | PDF
Research Article Genetics Ophthalmology

A pathogenic in-frame deletion-insertion variant in BEST1 phenocopies Stargardt disease

  • Text
  • PDF
Abstract

Here, we describe affected members of a 2-generation family with a Stargardt disease–like phenotype caused by a 2–base pair deletion insertion, c.1014_1015delGAinsCT;p.(Trp338_Asn339delinsCysTyr), in BEST1. The variant was identified by whole-exome sequencing, and its pathogenicity was verified through chloride channel recording using WT and transfected mutant HEK293 cells. Clinical examination of both patients revealed similar phenotypes at 2 different disease stages that were attributable to differences in their age at presentation. Hyperautofluorescent flecks along the arcades were observed in the proband, while the affected mother exhibited more advanced retinal pigment epithelium (RPE) loss in the central macula. Full-field electroretinogram testing was unremarkable in the daughter; however, moderate attenuation of generalized cone function was detected in the mother. Results from electrooculogram testing in the daughter were consistent with widespread dysfunction of the RPE characteristic of Best disease. Whole-cell patch-clamp recordings revealed a statistically significant decrease in chloride conductance of the mutant compared with WT cells. This report on a mother and daughter with a BEST1 genotype that phenocopies Stargardt disease broadens the clinical spectrum of BEST1-associated retinopathy.

Authors

Masha Kolesnikova, Jin Kyun Oh, Jiali Wang, Winston Lee, Jana Zernant, Pei-Yin Su, Angela H. Kim, Laura A. Jenny, Tingting Yang, Rando Allikmets, Stephen H. Tsang

×

Full Text PDF

Download PDF (1.50 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts