Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
FXYD2 antisense oligonucleotide provides an efficient approach for long-lasting relief of chronic peripheral pain
Alexandre Derre, … , Alexandre Pattyn, Stephanie Venteo
Alexandre Derre, … , Alexandre Pattyn, Stephanie Venteo
Published May 8, 2023
Citation Information: JCI Insight. 2023;8(9):e161246. https://doi.org/10.1172/jci.insight.161246.
View: Text | PDF
Research Article Neuroscience

FXYD2 antisense oligonucleotide provides an efficient approach for long-lasting relief of chronic peripheral pain

  • Text
  • PDF
Abstract

Chronic pain, whether of inflammatory or neuropathic origin, affects about 18% of the population of developed countries, and most current treatments are only moderately effective and/or cause serious side effects. Therefore, the development of novel therapeutic approaches still represents a major challenge. The Na,K-ATPase modulator FXYD2 is critically required for the maintenance of neuropathic pain in rodents. Here, we set up a therapeutic protocol based on the use of chemically modified antisense oligonucleotides (ASOs) to inhibit FXYD2 expression and treat chronic pain. We identified an ASO targeting a 20-nucleotide stretch in the FXYD2 mRNA that is evolutionarily conserved between rats and humans and is a potent inhibitor of FXYD2 expression. We used this sequence to synthesize lipid-modified forms of ASO (FXYD2-LASO) to facilitate their entry into dorsal root ganglia neurons. We established that intrathecal or intravenous injections of FXYD2-LASO in rat models of neuropathic or inflammatory pain led to a virtually complete alleviation of their pain symptoms, without causing obvious side effects. Remarkably, by using 2′-O-2-methoxyethyl chemical stabilization of the ASO (FXYD2-LASO-Gapmer), we could significantly prolong the therapeutic action of a single treatment up to 10 days. This study establishes FXYD2-LASO-Gapmer administration as a promising and efficient therapeutic strategy for long-lasting relief of chronic pain conditions in human patients.

Authors

Alexandre Derre, Noelian Soler, Valentine Billoux, Sebastien Benizri, Brune Vialet, Cyril Rivat, Philippe Barthélémy, Patrick Carroll, Alexandre Pattyn, Stephanie Venteo

×

Full Text PDF | Download (4.70 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts