Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Species-specific differences in NPC1 protein trafficking govern therapeutic response in Niemann-Pick type C disease
Mark L. Schultz, Kylie J. Schache, Ruth D. Azaria, Esmée Q. Kuiper, Steven Erwood, Evgueni A. Ivakine, Nicole Y. Farhat, Forbes D. Porter, Koralege C. Pathmasiri, Stephanie M. Cologna, Michael D. Uhler, Andrew P. Lieberman
Mark L. Schultz, Kylie J. Schache, Ruth D. Azaria, Esmée Q. Kuiper, Steven Erwood, Evgueni A. Ivakine, Nicole Y. Farhat, Forbes D. Porter, Koralege C. Pathmasiri, Stephanie M. Cologna, Michael D. Uhler, Andrew P. Lieberman
View: Text | PDF
Research Article Neuroscience Therapeutics

Species-specific differences in NPC1 protein trafficking govern therapeutic response in Niemann-Pick type C disease

  • Text
  • PDF
Abstract

The folding and trafficking of transmembrane glycoproteins are essential for cellular homeostasis and are compromised in many diseases. In Niemann-Pick type C disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, the transmembrane glycoprotein NPC1 misfolds due to disease-causing missense mutations. While mutant NPC1 has emerged as a robust target for proteostasis modulators, drug development efforts have been unsuccessful in mouse models. Here, we demonstrated unexpected differences in trafficking through the medial Golgi between mouse and human I1061T-NPC1, a common disease-causing mutant. We established that these distinctions are governed by differences in the NPC1 protein sequence rather than by variations in the endoplasmic reticulum–folding environment. Moreover, we demonstrated direct effects of mutant protein trafficking on the response to small molecules that modulate the endoplasmic reticulum–folding environment by affecting Ca++ concentration. Finally, we developed a panel of isogenic human NPC1 iNeurons expressing WT, I1061T-, and R934L-NPC1 and demonstrated their utility in testing these candidate therapeutics. Our findings identify important rules governing mutant NPC1’s response to proteostatic modulators and highlight the importance of species- and mutation-specific responses for therapy development.

Authors

Mark L. Schultz, Kylie J. Schache, Ruth D. Azaria, Esmée Q. Kuiper, Steven Erwood, Evgueni A. Ivakine, Nicole Y. Farhat, Forbes D. Porter, Koralege C. Pathmasiri, Stephanie M. Cologna, Michael D. Uhler, Andrew P. Lieberman

×

Figure 6

Creation of human iPSC NPC1 mutants.

Options: View larger image (or click on image) Download as PowerPoint
Creation of human iPSC NPC1 mutants.
(A) Workflow describing the generat...
(A) Workflow describing the generation of human iPSC lines. (B and C) Lysates were collected from WT, I1061T, and R934L-NPC1 iPSCs and analyzed for (B) total NPC1 (quantified at right) or (C) incubated with no treatment (NT) or digested with EndoH (E) or PNGase F (P) (quantified at right). Data are shown as the mean ± SEM from 4 independent experiments. ***P ≤ 0.001, ****P ≤ 0.0001 by ANOVA with Tukey’s post hoc. (B) F = 111.6, df = 2. (C) F = 152.5; df = 2.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts