Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

SHP2 inhibition enhances Yes-associated protein–mediated liver regeneration in murine partial hepatectomy models
Ryan D. Watkins, EeeLN H. Buckarma, Jennifer L. Tomlinson, Chantal E. McCabe, Jennifer A. Yonkus, Nathan W. Werneburg, Rachel L. Bayer, Patrick P. Starlinger, Keith D. Robertson, Chen Wang, Gregory J. Gores, Rory L. Smoot
Ryan D. Watkins, EeeLN H. Buckarma, Jennifer L. Tomlinson, Chantal E. McCabe, Jennifer A. Yonkus, Nathan W. Werneburg, Rachel L. Bayer, Patrick P. Starlinger, Keith D. Robertson, Chen Wang, Gregory J. Gores, Rory L. Smoot
View: Text | PDF
Research Article Hepatology Therapeutics

SHP2 inhibition enhances Yes-associated protein–mediated liver regeneration in murine partial hepatectomy models

  • Text
  • PDF
Abstract

Disrupted liver regeneration following hepatectomy represents an “undruggable” clinical challenge associated with poor patient outcomes. Yes-associated protein (YAP), a transcriptional coactivator that is repressed by the Hippo pathway, is instrumental in liver regeneration. We have previously described an alternative, Hippo-independent mechanism of YAP activation mediated by downregulation of protein tyrosine phosphatase nonreceptor type 11 (PTPN11, also known as SHP2) inhibition. Herein, we examined the effects of YAP activation with a selective SHP1/SHP2 inhibitor, NSC-87877, on liver regeneration in murine partial hepatectomy models. In our studies, NSC-87877 led to accelerated hepatocyte proliferation, improved liver regeneration, and decreased markers of injury following partial hepatectomy. The effects of NSC-87877 were lost in mice with hepatocyte-specific Yap/Taz deletion, and this demonstrated dependence on these molecules for the enhanced regenerative response. Furthermore, administration of NSC-87877 to murine models of nonalcoholic steatohepatitis was associated with improved survival and decreased markers of injury after hepatectomy. Evaluation of transcriptomic changes in the context of NSC-87877 administration revealed reduction in fibrotic signaling and augmentation of cell cycle signaling. Cytoprotective changes included downregulation of Nr4a1, an apoptosis inducer. Collectively, the data suggest that SHP2 inhibition induces a pro-proliferative and cytoprotective enhancement of liver regeneration dependent on YAP.

Authors

Ryan D. Watkins, EeeLN H. Buckarma, Jennifer L. Tomlinson, Chantal E. McCabe, Jennifer A. Yonkus, Nathan W. Werneburg, Rachel L. Bayer, Patrick P. Starlinger, Keith D. Robertson, Chen Wang, Gregory J. Gores, Rory L. Smoot

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 749 178
PDF 106 36
Figure 388 0
Supplemental data 79 7
Citation downloads 109 0
Totals 1,431 221
Total Views 1,652

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts