Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

TIAM1 acts as an actin organization regulator to control adipose tissue–derived pericyte cell fate
Ginny Ching-Yun Hsu, Yiyun Wang, Amy Z. Lu, Mario A. Gomez-Salazar, Jiajia Xu, Dongqing Li, Carolyn Meyers, Stefano Negri, Sintawat Wangsiricharoen, Kristen Broderick, Bruno Peault, Carol Morris, Aaron W. James
Ginny Ching-Yun Hsu, Yiyun Wang, Amy Z. Lu, Mario A. Gomez-Salazar, Jiajia Xu, Dongqing Li, Carolyn Meyers, Stefano Negri, Sintawat Wangsiricharoen, Kristen Broderick, Bruno Peault, Carol Morris, Aaron W. James
View: Text | PDF
Research Article Bone biology Cell biology

TIAM1 acts as an actin organization regulator to control adipose tissue–derived pericyte cell fate

  • Text
  • PDF
Abstract

Pericytes are multipotent mesenchymal precursor cells that demonstrate tissue-specific properties. In this study, by comparing human adipose tissue– and periosteum-derived pericyte microarrays, we identified T cell lymphoma invasion and metastasis 1 (TIAM1) as a key regulator of cell morphology and differentiation decisions. TIAM1 represented a tissue-specific determinant between predispositions for adipocytic versus osteoblastic differentiation in human adipose tissue–derived pericytes. TIAM1 overexpression promoted an adipogenic phenotype, whereas its downregulation amplified osteogenic differentiation. These results were replicated in vivo, in which TIAM1 misexpression altered bone or adipose tissue generation in an intramuscular xenograft animal model. Changes in pericyte differentiation potential induced by TIAM1 misexpression correlated with actin organization and altered cytoskeletal morphology. Small molecule inhibitors of either small GTPase Rac1 or RhoA/ROCK signaling reversed TIAM1-induced morphology and differentiation in pericytes. In summary, our results demonstrate that TIAM1 regulates the cellular morphology and differentiation potential of human pericytes, representing a molecular switch between osteogenic and adipogenic cell fates.

Authors

Ginny Ching-Yun Hsu, Yiyun Wang, Amy Z. Lu, Mario A. Gomez-Salazar, Jiajia Xu, Dongqing Li, Carolyn Meyers, Stefano Negri, Sintawat Wangsiricharoen, Kristen Broderick, Bruno Peault, Carol Morris, Aaron W. James

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 706 143
PDF 160 20
Figure 239 0
Supplemental data 51 0
Citation downloads 90 0
Totals 1,246 163
Total Views 1,409

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts