Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Molecular and behavioral consequences of Ube3a gene overdosage in mice
A. Mattijs Punt, Matthew C. Judson, Michael S. Sidorov, Brittany N. Williams, Naomi S. Johnson, Sabine Belder, Dion den Hertog, Courtney R. Davis, Maximillian S. Feygin, Patrick F. Lang, Mehrnoush Aghadavoud Jolfaei, Patrick J. Curran, Wilfred F.J. van IJcken, Ype Elgersma, Benjamin D. Philpot
A. Mattijs Punt, Matthew C. Judson, Michael S. Sidorov, Brittany N. Williams, Naomi S. Johnson, Sabine Belder, Dion den Hertog, Courtney R. Davis, Maximillian S. Feygin, Patrick F. Lang, Mehrnoush Aghadavoud Jolfaei, Patrick J. Curran, Wilfred F.J. van IJcken, Ype Elgersma, Benjamin D. Philpot
View: Text | PDF
Research Article Neuroscience

Molecular and behavioral consequences of Ube3a gene overdosage in mice

  • Text
  • PDF
Abstract

Chromosome 15q11.2–q13.1 duplication syndrome (Dup15q syndrome) is a severe neurodevelopmental disorder characterized by intellectual disability, impaired motor coordination, and autism spectrum disorder. Chromosomal multiplication of the UBE3A gene is presumed to be the primary driver of Dup15q pathophysiology, given that UBE3A exhibits maternal monoallelic expression in neurons and that maternal duplications typically yield far more severe neurodevelopmental outcomes than paternal duplications. However, studies into the pathogenic effects of UBE3A overexpression in mice have yielded conflicting results. Here, we investigated the neurodevelopmental impact of Ube3a gene overdosage using bacterial artificial chromosome–based transgenic mouse models (Ube3aOE) that recapitulate the increases in Ube3a copy number most often observed in Dup15q. In contrast to previously published Ube3a overexpression models, Ube3aOE mice were indistinguishable from wild-type controls on a number of molecular and behavioral measures, despite suffering increased mortality when challenged with seizures, a phenotype reminiscent of sudden unexpected death in epilepsy. Collectively, our data support a model wherein pathogenic synergy between UBE3A and other overexpressed 15q11.2–q13.1 genes is required for full penetrance of Dup15q syndrome phenotypes.

Authors

A. Mattijs Punt, Matthew C. Judson, Michael S. Sidorov, Brittany N. Williams, Naomi S. Johnson, Sabine Belder, Dion den Hertog, Courtney R. Davis, Maximillian S. Feygin, Patrick F. Lang, Mehrnoush Aghadavoud Jolfaei, Patrick J. Curran, Wilfred F.J. van IJcken, Ype Elgersma, Benjamin D. Philpot

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,105 436
PDF 184 57
Figure 743 2
Supplemental data 276 99
Citation downloads 90 0
Totals 2,398 594
Total Views 2,992

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts