Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Epithelial JAM-A is fundamental for intestinal wound repair in vivo
Shuling Fan, Kevin Boerner, Chithra K. Muraleedharan, Asma Nusrat, Miguel Quiros, Charles A. Parkos
Shuling Fan, Kevin Boerner, Chithra K. Muraleedharan, Asma Nusrat, Miguel Quiros, Charles A. Parkos
View: Text | PDF
Research Article Cell biology Gastroenterology

Epithelial JAM-A is fundamental for intestinal wound repair in vivo

  • Text
  • PDF
Abstract

Junctional adhesion molecule-A (JAM-A) is expressed in several cell types, including epithelial and endothelial cells, as well as some leukocytes. In intestinal epithelial cells (IEC), JAM-A localizes to cell junctions and plays a role in regulating barrier function. In vitro studies with model cell lines have shown that JAM-A contributes to IEC migration; however, in vivo studies investigating the role of JAM-A in cell migration–dependent processes such as mucosal wound repair have not been performed. In this study, we developed an inducible intestinal epithelial–specific JAM-A–knockdown mouse model (Jam-aERΔIEC). While acute induction of IEC-specific loss of JAM-A did not result in spontaneous colitis, such mice had significantly impaired mucosal healing after chemically induced colitis and after biopsy colonic wounding. In vitro primary cultures of JAM-A–deficient IEC demonstrated impaired migration in wound healing assays. Mechanistic studies revealed that JAM-A stabilizes formation of protein signaling complexes containing Rap1A/Talin/β1 integrin at focal adhesions of migrating IECs. Loss of JAM-A in primary IEC led to decreased Rap1A activity and protein levels of Talin and β1 integrin, and it led to a reduction in focal adhesion structures. These findings suggest that epithelial JAM-A plays a critical role in controlling mucosal repair in vivo through dynamic regulation of focal adhesions.

Authors

Shuling Fan, Kevin Boerner, Chithra K. Muraleedharan, Asma Nusrat, Miguel Quiros, Charles A. Parkos

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 493 146
PDF 137 26
Figure 308 0
Supplemental data 45 5
Citation downloads 53 0
Totals 1,036 177
Total Views 1,213

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts