Junctional adhesion molecule-A (JAM-A) is expressed in several cell types, including epithelial and endothelial cells, as well as some leukocytes. In intestinal epithelial cells (IEC), JAM-A localizes to cell junctions and plays a role in regulating barrier function. In vitro studies with model cell lines have shown that JAM-A contributes to IEC migration; however, in vivo studies investigating the role of JAM-A in cell migration–dependent processes such as mucosal wound repair have not been performed. In this study, we developed an inducible intestinal epithelial–specific JAM-A–knockdown mouse model (Jam-aERΔIEC). While acute induction of IEC-specific loss of JAM-A did not result in spontaneous colitis, such mice had significantly impaired mucosal healing after chemically induced colitis and after biopsy colonic wounding. In vitro primary cultures of JAM-A–deficient IEC demonstrated impaired migration in wound healing assays. Mechanistic studies revealed that JAM-A stabilizes formation of protein signaling complexes containing Rap1A/Talin/β1 integrin at focal adhesions of migrating IECs. Loss of JAM-A in primary IEC led to decreased Rap1A activity and protein levels of Talin and β1 integrin, and it led to a reduction in focal adhesion structures. These findings suggest that epithelial JAM-A plays a critical role in controlling mucosal repair in vivo through dynamic regulation of focal adhesions.
Shuling Fan, Kevin Boerner, Chithra K. Muraleedharan, Asma Nusrat, Miguel Quiros, Charles A. Parkos
Epithelial JAM-A promotes biopsy-induced mucosal wound healing in vivo.