Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Pseudomonas aeruginosa utilizes the host-derived polyamine spermidine to facilitate antimicrobial tolerance
Chowdhury M. Hasan, … , Daniel R. Neill, Joanne L. Fothergill
Chowdhury M. Hasan, … , Daniel R. Neill, Joanne L. Fothergill
Published October 4, 2022
Citation Information: JCI Insight. 2022;7(22):e158879. https://doi.org/10.1172/jci.insight.158879.
View: Text | PDF
Research Article Infectious disease Microbiology Article has an altmetric score of 12

Pseudomonas aeruginosa utilizes the host-derived polyamine spermidine to facilitate antimicrobial tolerance

  • Text
  • PDF
Abstract

Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the 2-component regulatory system sensor kinase gene pmrB in P. aeruginosa from CF lung infections and from experimental infection of mice. Here, we demonstrate that, while such mutations lowered in vitro minimum inhibitory concentrations for multiple antimicrobial classes, this was not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impaired aminoarabinose modification of LPS, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this could be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coated the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine was elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilized.

Authors

Chowdhury M. Hasan, Sian Pottenger, Angharad E. Green, Adrienne A. Cox, Jack S. White, Trevor Jones, Craig Winstanley, Aras Kadioglu, Megan H. Wright, Daniel R. Neill, Joanne L. Fothergill

×
Options: View larger image (or click on image) Download as PowerPoint
Presence of spermidine reduces antimicrobial susceptibility of PmrB-defi...

Presence of spermidine reduces antimicrobial susceptibility of PmrB-deficient but not wild-type P. aeruginosa


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Posted by 20 X users
32 readers on Mendeley
See more details