Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
First-in-class multifunctional TYMS nonclassical antifolate inhibitor with potent in vivo activity that prolongs survival
Maria V. Guijarro, … , Frederic J. Kaye, Maria Zajac-Kaye
Maria V. Guijarro, … , Frederic J. Kaye, Maria Zajac-Kaye
Published April 25, 2023
Citation Information: JCI Insight. 2023;8(10):e158798. https://doi.org/10.1172/jci.insight.158798.
View: Text | PDF
Research Article Therapeutics

First-in-class multifunctional TYMS nonclassical antifolate inhibitor with potent in vivo activity that prolongs survival

  • Text
  • PDF
Abstract

Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase. Collectively, this work identifies nonclassical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile, highlighting the potential for enhanced cancer therapy.

Authors

Maria V. Guijarro, Patrick C. Kellish, Peter E. Dib, Nicholas G. Paciaroni, Akbar Nawab, Jacob Andring, Lidia Kulemina, Nicholas V. Borrero, Carlos Modenutti, Michael Feely, Elham Nasri, Robert P. Seifert, Xiaoping Luo, Richard L. Bennett, Daniil Shabashvili, Jonathan D. Licht, Robert McKenna, Adrian Roitberg, Robert W. Huigens III, Frederic J. Kaye, Maria Zajac-Kaye

×

Figure 7

Mechanism of TS inhibition reveals nonclassical antifolate inhibitors.

Options: View larger image (or click on image) Download as PowerPoint
Mechanism of TS inhibition reveals nonclassical antifolate inhibitors.
(...
(A) Illustration outlining the drug displacement from TS with increasing substrate concentrations to highlight how increased molar ratios of the competing substrate will displace the prebound drug and shift the equilibrium to the enzyme/substrate complex. resulting in an increased conversion of tritiated dUMP. (B–E) Tritium assay for TS activity with increasing 5,10-mTHF or dUMP ratios for 19-S (19-S) (B), 19-S5 (19-S5) (C), 19-S7 (19-S7) (D), and control classical antifolate PEM (E). TS was preincubated with each compound using the indicated concentration; for each compound the concentration required for a 50% reduction in dUMP conversion after a 30-minute reaction was utilized to allow changes in dUMP conversion to be observed. Increasing TS activity with increasing 5,10-mTHF ratios was observed for all compounds, including the control antifolate PEM, while increasing dUMP ratios had no significant effect on TS activity, indicating compounds 19-S, 19-S5, and 19-S7 act as nonclassical antifolate inhibitors by competing only with the 5,10-mTHF substrate. Data are expressed as mean ± SD of n = 4 from 2 independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts