Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2
Naiyuan Cheng, … , Ki-Hyun Kim, Lester F. Lau
Naiyuan Cheng, … , Ki-Hyun Kim, Lester F. Lau
Published June 16, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.158207.
View: Text | PDF
Research In-Press Preview Hepatology

Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2

  • Text
  • PDF
Abstract

Senescent cells have long been associated with deleterious effects in aging-related pathologies, although recent studies have uncovered their beneficial roles in certain contexts such as wound healing. We have found that hepatic stellate cells (HSCs) undergo senescence within two days after 2/3 partial hepatectomy (PHx) in young (2-3 month-old) mice, and elimination of these senescent cells by the senolytic drug ABT263 or using a genetic mouse model impairs liver regeneration. Senescent HSCs secrete IL-6 and CXCR2 ligands as part of the senescence-associated secretory phenotype (SASP), which induces multiple signaling pathways to stimulate liver regeneration. IL-6 activates STAT3, induces YAP activation through SRC family kinases, and synergizes with CXCL2 to activate ERK1/2 to stimulate hepatocyte proliferation. The administration of either IL-6 or CXCL2 partially restores liver regeneration in mice with senescent cell elimination, and the combination of both fully restores liver weight recovery. Furthermore, the matricellular protein CCN1/CYR61 is rapidly elevated in response to PHx and induces HSC senescence. Knock-in mice expressing a mutant CCN1 unable to bind integrin α6β1 are deficient in senescent cells and liver regeneration after PHx. Thus, HSC senescence, largely induced by CCN1, is a programmed response to PHx and plays a critical role in liver regeneration through signaling pathways activated by IL-6 and ligands of CXCR2.

Authors

Naiyuan Cheng, Ki-Hyun Kim, Lester F. Lau

×

Full Text PDF | Download (2.43 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts