Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Transhemispheric cortex remodeling promotes forelimb recovery after spinal cord injury
Wei Wu, Tyler Nguyen, Josue D. Ordaz, Yiping Zhang, Nai-Kui Liu, Xinhua Hu, Yuxiang Liu, Xingjie Ping, Qi Han, Xiangbing Wu, Wenrui Qu, Sujuan Gao, Christopher B. Shields, Xiaoming Jin, Xiao-Ming Xu
Wei Wu, Tyler Nguyen, Josue D. Ordaz, Yiping Zhang, Nai-Kui Liu, Xinhua Hu, Yuxiang Liu, Xingjie Ping, Qi Han, Xiangbing Wu, Wenrui Qu, Sujuan Gao, Christopher B. Shields, Xiaoming Jin, Xiao-Ming Xu
View: Text | PDF
Research Article Neuroscience Therapeutics

Transhemispheric cortex remodeling promotes forelimb recovery after spinal cord injury

  • Text
  • PDF
Abstract

Understanding the reorganization of neural circuits spared after spinal cord injury in the motor cortex and spinal cord would provide insights for developing therapeutics. Using optogenetic mapping, we demonstrated a transhemispheric recruitment of neural circuits in the contralateral cortical M1/M2 area to improve the impaired forelimb function after a cervical 5 right-sided hemisection in mice, a model mimicking the human Brown-Séquard syndrome. This cortical reorganization can be elicited by a selective cortical optogenetic neuromodulation paradigm. Areas of whisker, jaw, and neck, together with the rostral forelimb area, on the motor cortex ipsilateral to the lesion were engaged to control the ipsilesional forelimb in both stimulation and nonstimulation groups 8 weeks following injury. However, significant functional benefits were only seen in the stimulation group. Using anterograde tracing, we further revealed a robust sprouting of the intact corticospinal tract in the spinal cord of those animals receiving optogenetic stimulation. The intraspinal corticospinal axonal sprouting correlated with the forelimb functional recovery. Thus, specific neuromodulation of the cortical neural circuits induced massive neural reorganization both in the motor cortex and spinal cord, constructing an alternative motor pathway in restoring impaired forelimb function.

Authors

Wei Wu, Tyler Nguyen, Josue D. Ordaz, Yiping Zhang, Nai-Kui Liu, Xinhua Hu, Yuxiang Liu, Xingjie Ping, Qi Han, Xiangbing Wu, Wenrui Qu, Sujuan Gao, Christopher B. Shields, Xiaoming Jin, Xiao-Ming Xu

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 582 118
PDF 123 33
Figure 437 0
Supplemental data 98 18
Citation downloads 464 0
Totals 1,704 169
Total Views 1,873

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts