Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Sphingosine 1-phosphate receptor 1 signaling in macrophages reduces atherosclerosis in LDL receptor–deficient mice
Francesco Potì, Enrica Scalera, Renata Feuerborn, Josephine Fischer, Lilli Arndt, Georg Varga, Evangelia Pardali, Matthias D. Seidl, Manfred Fobker, Gerhard Liebisch, Bettina Hesse, Alexander H. Lukasz, Jan Rossaint, Beate E. Kehrel, Frank Rosenbauer, Thomas Renné, Christina Christoffersen, Manuela Simoni, Ralph Burkhardt, Jerzy-Roch Nofer
Francesco Potì, Enrica Scalera, Renata Feuerborn, Josephine Fischer, Lilli Arndt, Georg Varga, Evangelia Pardali, Matthias D. Seidl, Manfred Fobker, Gerhard Liebisch, Bettina Hesse, Alexander H. Lukasz, Jan Rossaint, Beate E. Kehrel, Frank Rosenbauer, Thomas Renné, Christina Christoffersen, Manuela Simoni, Ralph Burkhardt, Jerzy-Roch Nofer
View: Text | PDF
Research Article Inflammation Vascular biology

Sphingosine 1-phosphate receptor 1 signaling in macrophages reduces atherosclerosis in LDL receptor–deficient mice

  • Text
  • PDF
Abstract

Sphingosine 1-phosphate (S1P) is a lysosphingolipid with antiatherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet–fed LDL receptor–deficient mice with high or low overexpression levels of S1P receptor 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, interferon regulatory factor 8 (IRF8), and liver X receptor (LXR) and were skewed toward an M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5; increased ATP-binding cassette transporter A1– and G1–dependent cholesterol efflux; increased expression of MerTK and efferocytosis; and reduced apoptosis due to elevated B cell lymphoma 6 and Maf bZIP B. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to downregulation of the cAMP-dependent PKA and activation of the signaling cascade encompassing protein kinases AKT and mTOR complex 1 as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1. Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages toward an antiatherogenic functional phenotype and countervails the development of atherosclerosis in mice.

Authors

Francesco Potì, Enrica Scalera, Renata Feuerborn, Josephine Fischer, Lilli Arndt, Georg Varga, Evangelia Pardali, Matthias D. Seidl, Manfred Fobker, Gerhard Liebisch, Bettina Hesse, Alexander H. Lukasz, Jan Rossaint, Beate E. Kehrel, Frank Rosenbauer, Thomas Renné, Christina Christoffersen, Manuela Simoni, Ralph Burkhardt, Jerzy-Roch Nofer

×

Figure 2

S1P1 overexpression in macrophages enhances expression and activation of PU.1 and interferon regulatory factor-8.

Options: View larger image (or click on image) Download as PowerPoint
S1P1 overexpression in macrophages enhances expression and activation of...
PMs from either S1pr1-KI (Ctrl, n = 7–10), S1pr1-LysMCre (Lys-Cre, n = 7–10), or S1pr1-F4/80Cre (F4-Cre, n = 7–10) on normal diet (ND) or Ldlr–/– mice transplanted with S1pr1-KI (n = 10), S1pr1-LysMCre (n = 9), or S1pr1-F4/80Cre (n = 9) BM on WD. (A) Gene expression in PMs from Lys-Cre and Ctrl mice (n = 3–4 for each group) assessed with microarrays. Left panel: expression pattern showing elevated genes controlled by PU.1/interferon regulatory factor-8 (IRF8) (colony-stimulating factor-1 receptor [Csf1r], Clec7a, Mrc1) and liver X receptor (LXR) (phospholipid transfer protein [Pltp], Ch25h, Apoe) in S1pr1-LysMCre mice. Right panel: enrichment analysis of upregulated transcripts in S1pr1-LysMCre mice. Chil3, chitinase 3-like; Hmox, heme oxygenase. (B) Pu1 and Irf8 expression by quantitative PCR (qPCR). mRNA normalized to Gapdh and shown relative to S1pr1-KI. (C) Intracellular stainings for PU.1 (top panels) and IRF8 (bottom panels) analyzed by flow cytometry (n = 3 for each group). (D) qPCR of PU.1 and IRF8 signature genes. (E) CD115 and MHC-II analyzed by flow cytometry. (F) PU.1 and IRF8 occupancy at Cfms (Cd115) and Mhc2ta (CIITApI, MHC-II) promoters analyzed by ChIP. Primers amplifying at –0.2 kb and +4.5 kb for Cfms and –74 bp and –3.0 kb for CIITApI used as positive binding sites and negative controls (n = 3–4 for each group). (G) CD115 and MHC-II mRNA expression in aortas of WD-fed Ldlr–/– mice receiving S1pr1-KI, S1pr1-LysMCre, or S1pr1-F4/80Cre BM. * - P < 0.05, ** - P < 0.01, *** - P < 0.001 (Lys-Cre vs. Ctrl or F4-Cre vs. Ctrl), § - P < 0.05, §§ - P < 0.01, §§§ - P < 0.001 (Lys-Cre vs. F4-Cre, 1-way or 2-way ANOVA except B IRF8 and D CIITApI/anti-PU.1: Kruskal-Wallis h test).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts