Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Mitochondrial fission and bioenergetics mediate human lung fibroblast durotaxis
Ting Guo, Chun-sun Jiang, Shan-Zhong Yang, Yi Zhu, Chao He, A. Brent Carter, Veena B. Antony, Hong Peng, Yong Zhou
Ting Guo, Chun-sun Jiang, Shan-Zhong Yang, Yi Zhu, Chao He, A. Brent Carter, Veena B. Antony, Hong Peng, Yong Zhou
View: Text | PDF
Research Article Cell biology Pulmonology

Mitochondrial fission and bioenergetics mediate human lung fibroblast durotaxis

  • Text
  • PDF
Abstract

Pulmonary fibrosis is characterized by stiffening of the extracellular matrix. Fibroblasts migrate in the direction of greater stiffness, a phenomenon termed durotaxis. The mechanically guided fibroblast migration could be a crucial step in the progression of lung fibrosis. In this study, we found primary human lung fibroblasts sense increasing matrix stiffness with a change of mitochondrial dynamics in favor of mitochondrial fission and increased production of ATP. Mitochondria polarize in the direction of a physiologically relevant stiffness gradient, with conspicuous localization to the leading edge, primarily lamellipodia and filopodia, of migrating lung fibroblasts. Matrix stiffness–regulated mitochondrial fission and durotactic lung fibroblast migration are mediated by a dynamin-related protein 1/mitochondrial fission factor–dependent (DRP1/MFF-dependent) pathway. Importantly, we found that the DRP1/MFF pathway is activated in fibrotic lung myofibroblasts in both human IPF and bleomycin-induced mouse lung fibrosis. These findings suggest that energy-producing mitochondria need to be sectioned via fission and repositioned in durotactic lung fibroblasts to meet the higher energy demand. This represents a potentially new mechanism through which mitochondria may contribute to the progression of fibrotic lung diseases. Inhibition of durotactic migration of lung fibroblasts may play an important role in preventing the progression of human idiopathic pulmonary fibrosis.

Authors

Ting Guo, Chun-sun Jiang, Shan-Zhong Yang, Yi Zhu, Chao He, A. Brent Carter, Veena B. Antony, Hong Peng, Yong Zhou

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (3.03 MB)

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts