Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Glucose supply and glycolysis inhibition shape the clinical fate of Staphylococcus epidermidis–infected preterm newborns
Tik Muk, … , Karoline Aasmul-Olsen, Duc Ninh Nguyen
Tik Muk, … , Karoline Aasmul-Olsen, Duc Ninh Nguyen
Published May 3, 2022
Citation Information: JCI Insight. 2022;7(11):e157234. https://doi.org/10.1172/jci.insight.157234.
View: Text | PDF
Research Article Infectious disease Inflammation

Glucose supply and glycolysis inhibition shape the clinical fate of Staphylococcus epidermidis–infected preterm newborns

  • Text
  • PDF
Abstract

Preterm infants are susceptible to bloodstream infection by coagulase-negative staphylococci (CONS) that can lead to sepsis. Glucose-rich parenteral nutrition is commonly used to support the infants’ growth and energy expenditure but may exceed endogenous regulation during infection, causing dysregulated immune response and clinical deterioration. Using a preterm piglet model of neonatal CONS sepsis induced by Staphylococcus epidermidis (S. epidermidis) infection, we demonstrate the delicate interplay between immunity and glucose metabolism to regulate the host infection response. Circulating glucose levels, glycolysis, and inflammatory response to infection are closely connected across the states of tolerance, resistance, and immunoparalysis. Furthermore, high parenteral glucose provision during infection induces hyperglycemia, elevated glycolysis, and inflammation, leading to metabolic acidosis and sepsis, whereas glucose-restricted individuals are clinically unaffected with increased gluconeogenesis to maintain moderate hypoglycemia. Finally, standard glucose supply maintaining normoglycemia or pharmacological glycolysis inhibition enhances bacterial clearance and dampens inflammation but fails to prevent sepsis. Our results uncover how blood glucose and glycolysis control circulating immune responses, in turn determining the clinical fate of preterm infants infected with CONS. Our findings suggest further refinements of the current practice of parenteral glucose supply for preterm infants during infection.

Authors

Tik Muk, Anders Brunse, Nicole L. Henriksen, Karoline Aasmul-Olsen, Duc Ninh Nguyen

×

Usage data is cumulative from May 2022 through April 2023.

Usage JCI PMC
Text version 3,793 52
PDF 506 17
Figure 404 0
Supplemental data 146 0
Citation downloads 60 0
Totals 4,909 69
Total Views 4,978

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts