Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

l-Type amino acid transporter 1 in hypothalamic neurons in mice maintains energy and bone homeostasis
Gyujin Park, … , Hojoon Lee, Eiichi Hinoi
Gyujin Park, … , Hojoon Lee, Eiichi Hinoi
Published March 2, 2023
Citation Information: JCI Insight. 2023;8(7):e154925. https://doi.org/10.1172/jci.insight.154925.
View: Text | PDF
Research Article Bone biology Endocrinology

l-Type amino acid transporter 1 in hypothalamic neurons in mice maintains energy and bone homeostasis

  • Text
  • PDF
Abstract

Hypothalamic neurons regulate body homeostasis by sensing and integrating changes in the levels of key hormones and primary nutrients (amino acids, glucose, and lipids). However, the molecular mechanisms that enable hypothalamic neurons to detect primary nutrients remain elusive. Here, we identified l-type amino acid transporter 1 (LAT1) in hypothalamic leptin receptor–expressing (LepR-expressing) neurons as being important for systemic energy and bone homeostasis. We observed LAT1-dependent amino acid uptake in the hypothalamus, which was compromised in a mouse model of obesity and diabetes. Mice lacking LAT1 (encoded by solute carrier transporter 7a5, Slc7a5) in LepR-expressing neurons exhibited obesity-related phenotypes and higher bone mass. Slc7a5 deficiency caused sympathetic dysfunction and leptin insensitivity in LepR-expressing neurons before obesity onset. Importantly, restoring Slc7a5 expression selectively in LepR-expressing ventromedial hypothalamus neurons rescued energy and bone homeostasis in mice deficient for Slc7a5 in LepR-expressing cells. Mechanistic target of rapamycin complex-1 (mTORC1) was found to be a crucial mediator of LAT1-dependent regulation of energy and bone homeostasis. These results suggest that the LAT1/mTORC1 axis in LepR-expressing neurons controls energy and bone homeostasis by fine-tuning sympathetic outflow, thus providing in vivo evidence of the implications of amino acid sensing by hypothalamic neurons in body homeostasis.

Authors

Gyujin Park, Kazuya Fukasawa, Tetsuhiro Horie, Yusuke Masuo, Yuka Inaba, Takanori Tatsuno, Takanori Yamada, Kazuya Tokumura, Sayuki Iwahashi, Takashi Iezaki, Katsuyuki Kaneda, Yukio Kato, Yasuhito Ishigaki, Michihiro Mieda, Tomohiro Tanaka, Kazuma Ogawa, Hiroki Ochi, Shingo Sato, Yun-Bo Shi, Hiroshi Inoue, Hojoon Lee, Eiichi Hinoi

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,243 209
PDF 153 32
Figure 474 17
Supplemental data 74 1
Citation downloads 124 0
Totals 2,068 259
Total Views 2,327

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts