In the progression phase of idiopathic pulmonary fibrosis (IPF), the normal alveolar structure of the lung is lost and replaced by remodeled fibrotic tissue and by bronchiolized cystic airspaces. Although these are characteristic features of IPF, knowledge of specific interactions between these pathological processes is limited. Here, the interaction of lung epithelial and lung mesenchymal cells was investigated in a coculture model of human primary airway epithelial cells (EC) and lung fibroblasts (FB). Single-cell RNA sequencing revealed that the starting EC population was heterogenous and enriched for cells with a basal cell signature. Furthermore, fractions of the initial EC and FB populations adopted distinct pro-fibrotic cell differentiation states upon cocultivation, resembling specific cell populations that were previously identified in lungs of patients with IPF. Transcriptomic analysis revealed active NF-κB signaling early in the cocultured EC and FB, and the identified NF-κB expression signatures were found in “HAS1 High FB” and “PLIN2+ FB” populations from IPF patient lungs. Pharmacological blockade of NF-κB signaling attenuated specific phenotypic changes of EC and prevented FB-mediated interleukin-6, interleukin-8, and CXC chemokine ligand 6 cytokine secretion, as well as collagen α-1(I) chain and α–smooth muscle actin accumulation. Thus, we identified NF-κB as a potential mediator, linking epithelial pathobiology with fibrogenesis.
Patrick Sieber, Anny Schäfer, Raphael Lieberherr, Silvia L. Caimi, Urs Lüthi, Jesper Ryge, Jan H. Bergmann, François Le Goff, Manuel Stritt, Peter Blattmann, Bérengère Renault, Patrick Rammelt, Bruno Sempere, Diego Freti, Rolf Studer, Eric S. White, Magdalena Birker-Robaczewska, Maxime Boucher, Oliver Nayler
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,203 | 779 |
167 | 120 | |
Figure | 348 | 20 |
Table | 21 | 0 |
Supplemental data | 191 | 47 |
Citation downloads | 59 | 0 |
Totals | 1,989 | 966 |
Total Views | 2,955 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.