Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Pathogenic variants in the human m6A reader YTHDC2 are associated with primary ovarian insufficiency
Sinéad M. McGlacken-Byrne, Ignacio Del Valle, Polona Le Quesne Stabej, Laura Bellutti, Luz Garcia-Alonso, Louise A. Ocaka, Miho Ishida, Jenifer P. Suntharalingham, Andrey Gagunashvili, Olumide K. Ogunbiyi, Talisa Mistry, Federica Buonocore, GOSgene, Berta Crespo, Nadjeda Moreno, Paola Niola, Tony Brooks, Caroline E. Brain, Mehul T. Dattani, Daniel Kelberman, Roser Vento-Tormo, Carlos F. Lagos, Gabriel Livera, Gerard S. Conway, John C. Achermann
Sinéad M. McGlacken-Byrne, Ignacio Del Valle, Polona Le Quesne Stabej, Laura Bellutti, Luz Garcia-Alonso, Louise A. Ocaka, Miho Ishida, Jenifer P. Suntharalingham, Andrey Gagunashvili, Olumide K. Ogunbiyi, Talisa Mistry, Federica Buonocore, GOSgene, Berta Crespo, Nadjeda Moreno, Paola Niola, Tony Brooks, Caroline E. Brain, Mehul T. Dattani, Daniel Kelberman, Roser Vento-Tormo, Carlos F. Lagos, Gabriel Livera, Gerard S. Conway, John C. Achermann
View: Text | PDF
Research Article Endocrinology Genetics

Pathogenic variants in the human m6A reader YTHDC2 are associated with primary ovarian insufficiency

  • Text
  • PDF
Abstract

Primary ovarian insufficiency (POI) affects 1% of women and carries significant medical and psychosocial sequelae. Approximately 10% of POI has a defined genetic cause, with most implicated genes relating to biological processes involved in early fetal ovary development and function. Recently, Ythdc2, an RNA helicase and N6-methyladenosine reader, has emerged as a regulator of meiosis in mice. Here, we describe homozygous pathogenic variants in YTHDC2 in 3 women with early-onset POI from 2 families: c. 2567C>G, p.P856R in the helicase-associated (HA2) domain and c.1129G>T, p.E377*. We demonstrated that YTHDC2 is expressed in the developing human fetal ovary and is upregulated in meiotic germ cells, together with related meiosis-associated factors. The p.P856R variant resulted in a less flexible protein that likely disrupted downstream conformational kinetics of the HA2 domain, whereas the p.E377* variant truncated the helicase core. Taken together, our results reveal that YTHDC2 is a key regulator of meiosis in humans and pathogenic variants within this gene are associated with POI.

Authors

Sinéad M. McGlacken-Byrne, Ignacio Del Valle, Polona Le Quesne Stabej, Laura Bellutti, Luz Garcia-Alonso, Louise A. Ocaka, Miho Ishida, Jenifer P. Suntharalingham, Andrey Gagunashvili, Olumide K. Ogunbiyi, Talisa Mistry, Federica Buonocore, GOSgene, Berta Crespo, Nadjeda Moreno, Paola Niola, Tony Brooks, Caroline E. Brain, Mehul T. Dattani, Daniel Kelberman, Roser Vento-Tormo, Carlos F. Lagos, Gabriel Livera, Gerard S. Conway, John C. Achermann

×

Figure 6

Schematic diagram of hypothesized mechanisms of action of YTHDC2 during human female meiosis.

Options: View larger image (or click on image) Download as PowerPoint
Schematic diagram of hypothesized mechanisms of action of YTHDC2 during ...
Although the exact role of partners is still incompletely understood, the YTHDC2-MEIOC-XRN1 complex would stabilize meiotic transcripts and/or degrade mitotic transcripts by binding to m6A-marked mRNA, promoting a normal mitosis to meiosis transition. At pachytene, YTHDC2 and other DExH helicases may functionally partner with PIWIL proteins within cytoplasmic RNA germ cell granules and may regulate piRNA activity, which is required for normal meiotic timing and progression.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts