Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Recurrent moderate hypoglycemia accelerates the progression of Alzheimer’s disease through impairment of the TRPC6/GLUT3 pathway
Chengkang He, … , Martin Tepel, Zhiming Zhu
Chengkang He, … , Martin Tepel, Zhiming Zhu
Published January 25, 2022
Citation Information: JCI Insight. 2022;7(5):e154595. https://doi.org/10.1172/jci.insight.154595.
View: Text | PDF
Research Article Endocrinology Article has an altmetric score of 11

Recurrent moderate hypoglycemia accelerates the progression of Alzheimer’s disease through impairment of the TRPC6/GLUT3 pathway

  • Text
  • PDF
Abstract

Currently, the most effective strategy for dealing with Alzheimer’s disease (AD) is delaying the onset of dementia. Severe hypoglycemia is strongly associated with dementia; however, the effects of recurrent moderate hypoglycemia (RH) on the progression of cognitive deficits in patients with diabetes with genetic susceptibility to AD remain unclear. Here, we report that insulin-controlled hyperglycemia slightly aggravated AD-type pathologies and cognitive impairment; however, RH significantly increased neuronal hyperactivity and accelerated the progression of cognitive deficits in streptozotocin-induced (STZ-induced) diabetic APP/PS1 mice. Glucose transporter 3–mediated (GLUT3-mediated) neuronal glucose uptake was not significantly altered under hyperglycemia but was markedly reduced by RH, which induced excessive mitochondrial fission in the hippocampus. Overexpression of GLUT3, specifically in the dentate gyrus (DG) area of the hippocampus, enhanced mitochondrial function and improved cognitive deficits. Activation of the transient receptor potential channel 6 (TRPC6) increased GLUT3-mediated glucose uptake in the brain and alleviated RH-induced cognitive deficits, and inactivation of the Ca2+/AMPK pathway was responsible for TRPC6-induced GLUT3 inhibition. Taken together, RH impairs brain GLUT3-mediated glucose uptake and further provokes neuronal mitochondrial dysfunction by inhibiting TRPC6 expression, which then accelerates progression of cognitive deficits in diabetic APP/PS1 mice. Avoiding RH is essential for glycemic control in patients with diabetes, and TRPC6/GLUT3 represents potent targets for delaying the onset of dementia in patients with diabetes.

Authors

Chengkang He, Qiang Li, Yuanting Cui, Peng Gao, Wentao Shu, Qing Zhou, Lijuan Wang, Li Li, Zongshi Lu, Yu Zhao, Huan Ma, Xiaowei Chen, Hongbo Jia, Hongting Zheng, Gangyi Yang, Daoyan Liu, Martin Tepel, Zhiming Zhu

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 722 230
PDF 82 75
Figure 265 9
Supplemental data 49 9
Citation downloads 59 0
Totals 1,177 323
Total Views 1,500
Created with Highcharts 3.0.9MonthTotalAug 24Sep 24Oct 24Nov 24Dec 24Jan 25Feb 25Mar 25Apr 25May 25Jun 25Jul 25Aug 2502505007501000125015001750
JCI Citation downloads
JCI Figure
JCI Text version
JCI PDF
JCI Supplemental data
PMC Text version
PMC PDF
Total JCI usage
Total PMC usage
Total usage

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Picked up by 1 news outlets
Posted by 4 X users
25 readers on Mendeley
See more details