Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Recurrent moderate hypoglycemia accelerates the progression of Alzheimer’s disease through impairment of the TRPC6/GLUT3 pathway
Chengkang He, … , Martin Tepel, Zhiming Zhu
Chengkang He, … , Martin Tepel, Zhiming Zhu
Published January 25, 2022
Citation Information: JCI Insight. 2022;7(5):e154595. https://doi.org/10.1172/jci.insight.154595.
View: Text | PDF
Research Article Endocrinology

Recurrent moderate hypoglycemia accelerates the progression of Alzheimer’s disease through impairment of the TRPC6/GLUT3 pathway

  • Text
  • PDF
Abstract

Currently, the most effective strategy for dealing with Alzheimer’s disease (AD) is delaying the onset of dementia. Severe hypoglycemia is strongly associated with dementia; however, the effects of recurrent moderate hypoglycemia (RH) on the progression of cognitive deficits in patients with diabetes with genetic susceptibility to AD remain unclear. Here, we report that insulin-controlled hyperglycemia slightly aggravated AD-type pathologies and cognitive impairment; however, RH significantly increased neuronal hyperactivity and accelerated the progression of cognitive deficits in streptozotocin-induced (STZ-induced) diabetic APP/PS1 mice. Glucose transporter 3–mediated (GLUT3-mediated) neuronal glucose uptake was not significantly altered under hyperglycemia but was markedly reduced by RH, which induced excessive mitochondrial fission in the hippocampus. Overexpression of GLUT3, specifically in the dentate gyrus (DG) area of the hippocampus, enhanced mitochondrial function and improved cognitive deficits. Activation of the transient receptor potential channel 6 (TRPC6) increased GLUT3-mediated glucose uptake in the brain and alleviated RH-induced cognitive deficits, and inactivation of the Ca2+/AMPK pathway was responsible for TRPC6-induced GLUT3 inhibition. Taken together, RH impairs brain GLUT3-mediated glucose uptake and further provokes neuronal mitochondrial dysfunction by inhibiting TRPC6 expression, which then accelerates progression of cognitive deficits in diabetic APP/PS1 mice. Avoiding RH is essential for glycemic control in patients with diabetes, and TRPC6/GLUT3 represents potent targets for delaying the onset of dementia in patients with diabetes.

Authors

Chengkang He, Qiang Li, Yuanting Cui, Peng Gao, Wentao Shu, Qing Zhou, Lijuan Wang, Li Li, Zongshi Lu, Yu Zhao, Huan Ma, Xiaowei Chen, Hongbo Jia, Hongting Zheng, Gangyi Yang, Daoyan Liu, Martin Tepel, Zhiming Zhu

×

Full Text PDF | Download (4.73 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts