Huntington’s disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site. In this study, we used a multidisciplinary approach to characterize the therapeutic potential of targeting HTT exon 12. We show that HTTΔ12 was resistant to caspase-6 cleavage in both cell-free and tissue lysate assays. However, HTTΔ12 retained overall biochemical and structural properties similar to those of wt-HTT. We generated mice in which HTT exon 12 was truncated and found that the canonical exon 12 was dispensable for the main physiological functions of HTT, including embryonic development and intracellular trafficking. Finally, we pharmacologically induced HTTΔ12 using the antisense oligonucleotide (ASO) QRX-704. QRX-704 showed predictable pharmacology and efficient biodistribution. In addition, it was stable for several months and inhibited pathogenic proteolysis. Furthermore, QRX-704 treatments resulted in a reduction of HTT aggregation and an increase in dendritic spine count. Thus, ASO-induced HTT exon 12 splice switching from HTT may provide an alternative therapeutic strategy for HD.
Hyeongju Kim, Sophie Lenoir, Angela Helfricht, Taeyang Jung, Zhana K. Karneva, Yejin Lee, Wouter Beumer, Geert B. van der Horst, Herma Anthonijsz, Levi C.M. Buil, Frits van der Ham, Gerard J. Platenburg, Pasi Purhonen, Hans Hebert, Sandrine Humbert, Frédéric Saudou, Pontus Klein, Ji-Joon Song
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 411 | 170 |
62 | 50 | |
Figure | 126 | 2 |
Table | 8 | 0 |
Supplemental data | 50 | 12 |
Citation downloads | 23 | 0 |
Totals | 680 | 234 |
Total Views | 914 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.