Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Mosaic loss of chromosome Y promotes leukemogenesis and clonal hematopoiesis
Qi Zhang, … , Yu Liu, Chong Chen
Qi Zhang, … , Yu Liu, Chong Chen
Published February 8, 2022
Citation Information: JCI Insight. 2022;7(3):e153768. https://doi.org/10.1172/jci.insight.153768.
View: Text | PDF
Research Article Genetics Hematology

Mosaic loss of chromosome Y promotes leukemogenesis and clonal hematopoiesis

  • Text
  • PDF
Abstract

Mosaic loss of chromosome Y (mLOY) in blood cells is one of the most frequent chromosome alterations in adult males. It is strongly associated with clonal hematopoiesis, hematopoietic malignancies, and other hematopoietic and nonhematopoietic diseases. However, whether there is a causal relationship between mLOY and human diseases is unknown. Here, we generated mLOY in murine hematopoietic stem and progenitor cells (HSPCs) with CRISPR/Cas9 genome editing. We found that mLOY led to dramatically increased DNA damage in HSPCs. Interestingly, HSPCs with mLOY displayed significantly enhanced reconstitution capacity and gave rise to clonal hematopoiesis in vivo. mLOY, which is associated with AML1-ETO translocation and p53 defects in patients with acute myeloid leukemia (AML), promoted AML in mice. Mechanistically, loss of KDM5D, a chromosome Y–specific histone 3 lysine 4 demethylase in both humans and mice, partially recapitulated mLOY in DNA damage and leukemogenesis. Thus, our study validates mLOY as a functional driver for clonal hematopoiesis and leukemogenesis.

Authors

Qi Zhang, Lei Zhao, Yi Yang, Shujun Li, Yu Liu, Chong Chen

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts