Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
KLF5 protects the intestinal epithelium against Th17 immune response in a murine colitis model
Jason Shieh, Timothy H. Chu, Yang Liu, Julie Kim, Ainara Ruiz de Sabando, Soma Kobayashi, Sui Y. Zee, Brian S. Sheridan, Agnieszka B. Bialkowska, Vincent W. Yang
Jason Shieh, Timothy H. Chu, Yang Liu, Julie Kim, Ainara Ruiz de Sabando, Soma Kobayashi, Sui Y. Zee, Brian S. Sheridan, Agnieszka B. Bialkowska, Vincent W. Yang
View: Text | PDF
Research Article Gastroenterology Inflammation

KLF5 protects the intestinal epithelium against Th17 immune response in a murine colitis model

  • Text
  • PDF
Abstract

Inflammatory bowel disease (IBD) is a chronic illness characterized by dysregulated immune cascades in the intestines, in which the Th17 immune response plays an important role. We demonstrated that mice with intestinal epithelium–specific deletion of Krüppel-like factor 5 (Klf5) developed Th17-dependent colonic inflammation. In the absence of KLF5, there was aberrant cellular localization of phosphorylated STAT3, an essential mediator of the Th17-associated cytokine, IL-22, which is required for epithelial tissue regeneration. In contrast, mitigation of IL-17A with anti–IL-17A neutralizing antibody attenuated colitis in Klf5-deficient mice. There was also a considerable shift in the colonic microbiota of Klf5-deficient mice that phenocopied human IBD. Notably, the inflammatory response due to Klf5 deletion was alleviated by antibiotic treatment, implicating the role of microbiota in pathogenesis. Finally, human colitic tissues had reduced KLF5 levels when compared with healthy tissues. Together, these findings demonstrated the importance of KLF5 in protecting the intestinal epithelium against Th17-mediated immune and inflammatory responses. The mice described herein may serve as a potential model for human IBD.

Authors

Jason Shieh, Timothy H. Chu, Yang Liu, Julie Kim, Ainara Ruiz de Sabando, Soma Kobayashi, Sui Y. Zee, Brian S. Sheridan, Agnieszka B. Bialkowska, Vincent W. Yang

×

Figure 11

Model for a role of epithelial KLF5 in guarding against intestinal inflammation.

Options: View larger image (or click on image) Download as PowerPoint
Model for a role of epithelial KLF5 in guarding against intestinal infla...
Left shows the homeostatic state of the colon in which KLF5 regulates proliferation of crypt epithelial cells (27). Nuclear-cytoplasmic shuttling of KLF5 has previously been demonstrated (56). Middle panel shows colitis with intact KLF5, which promotes IL-22–mediated epithelial regeneration by assisting in the nuclear localization of p-STAT3. Right panel shows colitis in the absence of KLF5 due to the lack of p-STAT3 nuclear localization in response to IL-22.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts