Glycogen debranching enzyme deficiency in glycogen storage disease type III (GSD III) results in excessive glycogen accumulation in multiple tissues, primarily the liver, heart, and skeletal muscle. We recently reported that an adeno-associated virus vector expressing a bacterial debranching enzyme (pullulanase) driven by the ubiquitous CMV enhancer/chicken β-actin (CB) promoter cleared glycogen in major affected tissues of infant GSD IIIa mice. In this study, we developed a potentially novel dual promoter consisting of a liver-specific promoter (LSP) and the CB promoter for gene therapy in adult GSD IIIa mice. Ten-week treatment with an adeno-associated virus vector containing the LSP-CB dual promoter in adult GSD IIIa mice significantly increased pullulanase expression and reduced glycogen contents in the liver, heart, and skeletal muscle, accompanied by the reversal of liver fibrosis, improved muscle function, and a significant decrease in plasma biomarkers alanine aminotransferase, aspartate aminotransferase, and creatine kinase. Compared with the CB promoter, the dual promoter effectively decreased pullulanase-induced cytotoxic T lymphocyte responses and enabled persistent therapeutic gene expression in adult GSD IIIa mice. Future studies are needed to determine the long-term durability of dual promoter–mediated expression of pullulanase in adult GSD IIIa mice and in large animal models.
Jeong-A Lim, Priya S. Kishnani, Baodong Sun
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 269 | 116 |
58 | 40 | |
Figure | 145 | 3 |
Supplemental data | 30 | 1 |
Citation downloads | 49 | 0 |
Totals | 551 | 160 |
Total Views | 711 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.