The individual contribution of specific myeloid subsets such as CD1c+ conventional DC (cDC) to perpetuation of rheumatoid arthritis (RA) pathology remains unclear. In addition, the specific innate sensors driving pathogenic activation of CD1c+ cDC in patients with RA and their functional implications have not been characterized. Here, we assessed phenotypical, transcriptional, and functional characteristics of CD1c+ and CD141+ cDC and monocytes from the blood and synovial fluid of patients with RA. Increased levels of CCR2 and the IgG receptor CD64 on circulating CD1c+ cDC was associated with the presence of this DC subset in the synovial membrane in patients with RA. Moreover, synovial CD1c+ cDC are characterized by increased expression of proinflammatory cytokines and high abilities to induce pathogenic IFN-γ+IL-17+CD4+ T cells in vitro. Finally, we identified the crosstalk between Fcγ receptors and NLRC4 as a potential molecular mechanism mediating pathogenic activation, CD64 upregulation, and functional specialization of CD1c+ cDC in response to dsDNA-IgG in patients with RA.
Cristina Delgado-Arévalo, Marta Calvet-Mirabent, Ana Triguero-Martínez, Enrique Vázquez de Luis, Alberto Benguría-Filippini, Raquel Largo, Diego Calzada-Fraile, Olga Popova, Ildefonso Sánchez-Cerrillo, Ilya Tsukalov, Roberto Moreno-Vellisca, Hortensia de la Fuente, Gabriel Herrero-Beaumont, Almudena Ramiro, Francisco Sánchez-Madrid, Santos Castañeda, Ana Dopazo, Isidoro González Álvaro, Enrique Martin-Gayo
Expression of CCR2 on CD1c+ cDC associates with depletion of CD64hi-activated cells from the blood of patients with RA.