Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
The interaction of secreted phospholipase A2-IIA with the microbiota alters its lipidome and promotes inflammation
Etienne Doré, … , Arnaud Droit, Eric Boilard
Etienne Doré, … , Arnaud Droit, Eric Boilard
Published January 25, 2022
Citation Information: JCI Insight. 2022;7(2):e152638. https://doi.org/10.1172/jci.insight.152638.
View: Text | PDF
Research Article Inflammation Microbiology

The interaction of secreted phospholipase A2-IIA with the microbiota alters its lipidome and promotes inflammation

  • Text
  • PDF
Abstract

Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.

Authors

Etienne Doré, Charles Joly-Beauparlant, Satoshi Morozumi, Alban Mathieu, Tania Lévesque, Isabelle Allaeys, Anne-Claire Duchez, Nathalie Cloutier, Mickaël Leclercq, Antoine Bodein, Christine Payré, Cyril Martin, Agnes Petit-Paitel, Michael H. Gelb, Manu Rangachari, Makoto Murakami, Laetitia Davidovic, Nicolas Flamand, Makoto Arita, Gérard Lambeau, Arnaud Droit, Eric Boilard

×

Figure 7

Mice expressing sPLA2-IIA possess an altered fecal lipidome.

Options: View larger image (or click on image) Download as PowerPoint
Mice expressing sPLA2-IIA possess an altered fecal lipidome.
The intesti...
The intestinal and fecal lipid profile of 14-month-old and arthritic 14-week-old male mice housed in the Elite SPF+ animal facility was investigated. (A and B) Lipids were isolated from intestinal samples and identified using high-performance liquid chromatography combined with mass spectrometry. The data distributions for 14-month-old (n = 4) (A) and 14-week-old arthritic mice (n = 9–10) (B) were visualized by principal component analysis (PCA) with 99 % confidence ellipses. (C–F) An untargeted lipidomic analysis was performed using murine fecal samples. Data from 14-month-old (C) and 14-week-old arthritic mice (D) treated or not with antibiotics were visualized by PCA with 99 % confidence ellipses (n = 3–5). (E) Heatmap of the Z scores of the measured lipid classes for each experimental group. (F) Concentration of total fatty acids and lysophospholipids in samples from each mouse group (n = 3–5). (F) Data are presented as mean ± SEM. Statistical analysis included the following: unpaired t test and 1-way ANOVA with Šidák multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts