Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Sequencing of a Chinese tetralogy of Fallot cohort reveals clustering mutations in myogenic heart progenitors
Clara Sze Man Tang, Mimmi Mononen, Wai-Yee Lam, Sheng Chih Jin, Xuehan Zhuang, Maria-Mercè Garcia-Barcelo, Qiongfen Lin, Yujia Yang, Makoto Sahara, Elif Eroglu, Kenneth R. Chien, Haifa Hong, Paul Kwong Hang Tam, Peter J. Gruber
Clara Sze Man Tang, Mimmi Mononen, Wai-Yee Lam, Sheng Chih Jin, Xuehan Zhuang, Maria-Mercè Garcia-Barcelo, Qiongfen Lin, Yujia Yang, Makoto Sahara, Elif Eroglu, Kenneth R. Chien, Haifa Hong, Paul Kwong Hang Tam, Peter J. Gruber
View: Text | PDF
Research Article Cardiology Development

Sequencing of a Chinese tetralogy of Fallot cohort reveals clustering mutations in myogenic heart progenitors

  • Text
  • PDF
Abstract

Tetralogy of Fallot (TOF) is the most common cyanotic heart defect, yet the underlying genetic mechanisms remain poorly understood. Here, we performed whole-genome sequencing analysis on 146 nonsyndromic TOF parent-offspring trios of Chinese ethnicity. Comparison of de novo variants and recessive genotypes of this data set with data from a European cohort identified both overlapping and potentially novel gene loci and revealed differential functional enrichment between cohorts. To assess the impact of these mutations on early cardiac development, we integrated single-cell and spatial transcriptomics of early human heart development with our genetic findings. We discovered that the candidate gene expression was enriched in the myogenic progenitors of the cardiac outflow tract. Moreover, subsets of the candidate genes were found in specific gene coexpression modules along the cardiomyocyte differentiation trajectory. These integrative functional analyses help dissect the pathogenesis of TOF, revealing cellular hotspots in early heart development resulting in cardiac malformations.

Authors

Clara Sze Man Tang, Mimmi Mononen, Wai-Yee Lam, Sheng Chih Jin, Xuehan Zhuang, Maria-Mercè Garcia-Barcelo, Qiongfen Lin, Yujia Yang, Makoto Sahara, Elif Eroglu, Kenneth R. Chien, Haifa Hong, Paul Kwong Hang Tam, Peter J. Gruber

×

Full Text PDF

Download PDF (8.15 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts