Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Functional characterization of the biogenic amine transporters on human macrophages
Phillip M. Mackie, Adithya Gopinath, Dominic M. Montas, Alyssa Nielsen, Aidan Smith, Rachel A. Nolan, Kaitlyn Runner, Stephanie M. Matt, John McNamee, Joshua E. Riklan, Kengo Adachi, Andria Doty, Adolfo Ramirez-Zamora, Long Yan, Peter J. Gaskill, Wolfgang J. Streit, Michael S. Okun, Habibeh Khoshbouei
Phillip M. Mackie, Adithya Gopinath, Dominic M. Montas, Alyssa Nielsen, Aidan Smith, Rachel A. Nolan, Kaitlyn Runner, Stephanie M. Matt, John McNamee, Joshua E. Riklan, Kengo Adachi, Andria Doty, Adolfo Ramirez-Zamora, Long Yan, Peter J. Gaskill, Wolfgang J. Streit, Michael S. Okun, Habibeh Khoshbouei
View: Text | PDF
Research Article Inflammation Neuroscience

Functional characterization of the biogenic amine transporters on human macrophages

  • Text
  • PDF
Abstract

Monocyte-derived macrophages (MDMs) are key players in tissue homeostasis and diseases regulated by a variety of signaling molecules. Recent literature has highlighted the ability for biogenic amines to regulate macrophage functions, but the mechanisms governing biogenic amine signaling in and around immune cells remain nebulous. In the CNS, biogenic amine transporters are regarded as the master regulators of neurotransmitter signaling. While we and others have shown that macrophages express these transporters, relatively little is known of their function in these cells. To address these knowledge gaps, we investigated the function of norepinephrine transporter (NET) and dopamine transporter (DAT) on human MDMs. We found that both NET and DAT are present and can uptake substrate from the extracellular space at baseline. Not only was DAT expressed in cultured MDMs, but it was also detected in a subset of intestinal macrophages in situ. Surprisingly, we discovered a NET-independent, DAT-mediated immunomodulatory mechanism in response to LPS. LPS induced reverse transport of dopamine through DAT, engaging an autocrine/paracrine signaling loop that regulated the macrophage response. Removing this signaling loop enhanced the proinflammatory response to LPS. Our data introduce a potential role for DAT in the regulation of innate immunity.

Authors

Phillip M. Mackie, Adithya Gopinath, Dominic M. Montas, Alyssa Nielsen, Aidan Smith, Rachel A. Nolan, Kaitlyn Runner, Stephanie M. Matt, John McNamee, Joshua E. Riklan, Kengo Adachi, Andria Doty, Adolfo Ramirez-Zamora, Long Yan, Peter J. Gaskill, Wolfgang J. Streit, Michael S. Okun, Habibeh Khoshbouei

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,492 152
PDF 233 23
Figure 652 0
Table 44 0
Supplemental data 148 11
Citation downloads 130 0
Totals 2,699 186
Total Views 2,885

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts