Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion
Jacob A. Myers, … , Martin Felices, Jeffrey S. Miller
Jacob A. Myers, … , Martin Felices, Jeffrey S. Miller
Published June 21, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.150079.
View: Text | PDF
Research In-Press Preview Immunology Therapeutics

Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion

  • Text
  • PDF
Abstract

Natural killer (NK) cell exhaustion is caused by chronic exposure to activating stimuli during viral infection, tumorigenesis, and prolonged cytokine treatment. Evidence suggests that exhaustion may play a role in disease progression, however relative to T cell exhaustion, the mechanisms underlying NK cell exhaustion and methods of reversing it are poorly understood. Here, we describe a novel in vitro model of exhaustion that employs plate-bound agonists of the NK cell activating receptors NKp46 and NKG2D to induce canonical exhaustion phenotypes. In this model, prolonged activation results in downregulation of activating receptors, upregulation of checkpoint markers, decreased cytokine production and cytotoxicity in vitro, defects in glycolytic metabolism, and decreased persistence, function, and tumor control in vivo. Furthermore, we discover a beneficial effect of NK cell inhibitory receptor signaling during exhaustion. By simultaneously engaging the inhibitory receptor NKG2A during activation in our model, cytokine production and cytotoxicity defects can be mitigated, suggesting that balancing positive and negative signals integrated by effector NK cells can be beneficial for anti-tumor immunity. Together, these data uncover some of the mechanisms underlying NK cell exhaustion in humans and establish our novel in vitro model as a valuable tool for studying the processes regulating exhaustion.

Authors

Jacob A. Myers, Dawn Schirm, Laura Bendzick, Rachel Hopps, Carly Selleck, Peter Hinderlie, Martin Felices, Jeffrey S. Miller

×

Full Text PDF | Download (680.13 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts