Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
GLP-1 receptor signaling increases PCSK1 and β cell features in human α cells
Mridusmita Saikia, Marlena M. Holter, Leanne R. Donahue, Isaac S. Lee, Qiaonan C. Zheng, Journey L. Wise, Jenna E. Todero, Daryl J. Phuong, Darline Garibay, Reilly Coch, Kyle W. Sloop, Adolfo Garcia-Ocana, Charles G. Danko, Bethany P. Cummings
Mridusmita Saikia, Marlena M. Holter, Leanne R. Donahue, Isaac S. Lee, Qiaonan C. Zheng, Journey L. Wise, Jenna E. Todero, Daryl J. Phuong, Darline Garibay, Reilly Coch, Kyle W. Sloop, Adolfo Garcia-Ocana, Charles G. Danko, Bethany P. Cummings
View: Text | PDF
Research Article Endocrinology Metabolism

GLP-1 receptor signaling increases PCSK1 and β cell features in human α cells

  • Text
  • PDF
Abstract

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that potentiates glucose-stimulated insulin secretion. GLP-1 is classically produced by gut L cells; however, under certain circumstances α cells can express the prohormone convertase required for proglucagon processing to GLP-1, prohormone convertase 1/3 (PC1/3), and can produce GLP-1. However, the mechanisms through which this occurs are poorly defined. Understanding the mechanisms by which α cell PC1/3 expression can be activated may reveal new targets for diabetes treatment. Here, we demonstrate that the GLP-1 receptor (GLP-1R) agonist, liraglutide, increased α cell GLP-1 expression in a β cell GLP-1R–dependent manner. We demonstrate that this effect of liraglutide was translationally relevant in human islets through application of a new scRNA-seq technology, DART-Seq. We found that the effect of liraglutide to increase α cell PC1/3 mRNA expression occurred in a subcluster of α cells and was associated with increased expression of other β cell–like genes, which we confirmed by IHC. Finally, we found that the effect of liraglutide to increase bihormonal insulin+ glucagon+ cells was mediated by the β cell GLP-1R in mice. Together, our data validate a high-sensitivity method for scRNA-seq in human islets and identify a potentially novel GLP-1–mediated pathway regulating human α cell function.

Authors

Mridusmita Saikia, Marlena M. Holter, Leanne R. Donahue, Isaac S. Lee, Qiaonan C. Zheng, Journey L. Wise, Jenna E. Todero, Daryl J. Phuong, Darline Garibay, Reilly Coch, Kyle W. Sloop, Adolfo Garcia-Ocana, Charles G. Danko, Bethany P. Cummings

×

Figure 3

DART-Seq assessment of human islets treated with saline or a GLP-1R agonist.

Options: View larger image (or click on image) Download as PowerPoint
DART-Seq assessment of human islets treated with saline or a GLP-1R agon...
(A) Expression level of INS (red), GCG (green), and SST (blue) projected on the UMAP generated from human islets treated with saline (CTRL) or liraglutide (LIRA). (B) Percentage of α, β, and δ cells in saline- and liraglutide-treated islets from the 3 individual donors (D1–D3) and in the combined data set (CD). (C) UMAP projection of all endocrine cells with respective subclusters in saline- and liraglutide-treated islets. (D) Dot plots showing the expression level of key identity genes in α cell (right) and β cell (left) subclusters. (E) Pseudotime trajectory of α and β cell subclusters showing relative expression of key identity genes, ARX, DNMT1, MAFA, and PDX1. (F) Percentage of α and β cell subclusters in saline- and liraglutide-treated islets. Percentage calculated using combined data set. n = 3 per group. See also Supplemental Figure 3 and Supplemental Table 2.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts